簡易檢索 / 詳目顯示

研究生: 黃任佑
Huang, Ren-You
論文名稱: 運用氣溶膠法製備金屬-有機框架衍生材料作為催化二氧化碳與一氧化碳氫化製甲醇反應之應用
Aerosol Synthesis of Metal-Organic Framework-Derived Hybrid Catalyst Materials for Combined CO2 and CO Hydrogenation to Methanol
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 潘詠庭
Pan, Yung-Tin
李岱洲
Lee, Tai-Chou
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: 二氧化碳氣溶膠甲醇一氧化碳金屬-有機框架
外文關鍵詞: Carbon dioxide, Aerosol, Methanol, Carbon monoxide, Copper, MOF
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來二氧化碳減量議題受到關注。本研究將針對二氧化碳氫化製備甲醇的二氧化碳再利用途徑進行觸媒材料開發,並運用二階段預還原二氧化碳的想法,將二氧化碳加一氧化碳作為模擬進料,以進行氫化反應來製備甲醇,達到高選擇率之目標。
    本研究之第一部份將探討以金屬-有機框架 (Metal-organic framework, MOF)為基礎之混成式奈米材料,作為催化二氧化碳加一氧化碳結合式氫化反應的觸媒。我們利用噴霧乾燥技術進行蒸發誘導自組裝,製備HKUST-1 (Cu-MOF),並與氧化鋁奈米粉末 (Al2O3 nanopowder) 結合,最後經熱處理以製備Cu-ZnO擔載於Al2O3上的混成式奈米結構,並透過儀器進行相輔式材料分析,探討合成材料之特性。研究結果表明了透過MOF衍生之材料維持優異的金屬分散性質,從而成為具有良好的金屬分散度以及較低的晶體尺寸之Cu-ZnO/Al2O3混成式奈米粒子結構。而透過ZnO (助觸媒) 和Al2O3 (載體) 的添加,提升了 Cu-MOF 衍生材料的活性。結果表明,具較高活性金屬表面積之Cu-ZnO/Al2O3混成式奈米粒子對於二氧化碳加一氧化碳結合式氫化反應顯示出相當高的甲醇空間產率以及選擇率,並以此推測二氧化碳氫化反應之速率決定步驟為氫氣於銅表面之解離性吸附。透過ZnO的添加,觸媒對於催化此反應之甲醇空間產率以及選擇率皆有大幅的提升,顯示出所開發MOF衍生之混成式奈米觸媒的Cu-Zn-O界面對於催化二氧化碳加一氧化碳結合式氫化反應之重要性。而Al2O3的添加能增加金屬分散度及活性金屬表面積,並進而提高催化活性。
    而在本研究之第二部份中,我們優化材料合成方法之設計及擴展即時性材料分析之能力。透過第一段噴霧乾燥技術合成MOF材料,並將其分散於水相中與活性成分前驅物均勻分散形成膠體,再運用第二段霧化裝置,進行膠體MOF材料霧化與氣相誘導自組裝,再透過兩段式連續氣相熱處理,以製備出Cu-ZnO擔載於氧化鋁奈米粉末 (Al2O3 nanopowder) 或二氧化鈰奈米粉末 (CeO2 nanopowder) 上之混成式奈米結構,並結合氣相奈米粒子電移動度分析儀 (Differential mobility analyzer, DMA),通過氣相電泳法之原理,即時分析所製備MOF衍生混成式觸媒之電移動度粒徑分布,藉此對材料製程之參數進行即時調控與優化,不僅如此,我們透過儀器進行相輔式材料分析,研究合成材料之性質。本研究透過製程的改善,成功合成出MOF衍生混成式觸媒,並通過DMA實現即時奈米粒子電移動度粒徑分析,達成了連續式合成與即時性分析之目的。結果顯示由此方法合成之粒子尺寸 (50~500 nm) 會比噴霧乾燥法合成產物之粒子尺寸 (1~5 μm)更小。而相較於Al2O3,以CeO2為載體之樣品具有較高之甲醇選擇率,但由於較低的金屬分散度及活性金屬表面積,因此甲醇時空產率仍低於以Al2O3為載體之樣品。
    本研究以氣相蒸發誘導自組裝作為基礎,成功建立一新型MOF衍生之混成式奈米觸媒材料的合成方法,並將其應用於催化二氧化碳加一氧化碳結合式氫化反應,且藉由儀器輔助分析,探討MOF衍生混成式奈米材料在不同的合成條件下,對材料特性及其後續催化活性造成之影響。期許透過此研究之研究結果,優化MOF衍生材料的性能表現,進而開發出應用於碳捕捉再利用領域之高效觸媒,提升二氧化碳之應用價值,在實現減少溫室氣體排放的同時,生產有價值的化學產品之目標。


    Reduction of CO2 is the major topic to the environment in recent years. This study aims to develop catalyst for CO2 hydrogenation to methanol. The idea of two-stage hydrogenation of CO2 is employed to achieve a higher selectivity to methanol by design, where a combination of CO2, CO and H2 is used as the simulated feedstock for the second stage hydrogenation to methanol.

    In the first part, a spray-drying approach is presented to develop (1) Cu-based metal–organic framework (Cu-MOF) supported on aluminum oxide and (2) its derived Cu-ZnO/Al2O3 hybrid catalyst for combined (CO + CO2) hydrogenation to methanol. The results show superior high space time yield, 23.14 mmol gcat-1h−1, and selectivity to methanol (85%) were achievable under a moderate-pressure (30 bar) and relatively low-temperature (220 °C) operation. Incorporation of ZnO and Al2O3 enhanced the dispersion and the redox ability of Cu in the MOF-derived catalyst, both of which were critical factors to the catalytic activity toward the combined hydrogenation of CO2 and CO to methanol. An optimal performance, in terms of the methanol yield, was achieved by using the catalyst with a Cu/Zn molar ratio of 2 and partially reduction by H2 at a relatively lower temperature (300 °C).

    In the second part, we optimized the synthesis method and expanded the capability of real-time material analysis. Firstly, we dispersed the MOF materials, which were synthesized by spray-drying approach, in an aqueous solution to form a colloidal solution uniformly dispersed with the precursor of active components. Based on principle of gas-phase evaporation-induced self-assembly, we atomized the colloidal solution and employed continuous two-stage gas-phase thermal treatment to fabricate MOF-derived Cu-ZnO supported on Al2O3 or CeO2 hybrid nanostructures. Additionally, differential mobility analyzer (DMA), a real-time gas-phase electrophoretic analysis of of the MOF-derived materials in aerosol state was employed for providing the traceability of the particle synthesis. The results demonstrated a successful synthesis in combination with real-time electrophoretic analysis of the synthesized MOF-derived materials. The particle size of MOF-derived materials synthesized by using this method (50~500 nm) will be smaller than using spray-drying (1~5 μm). In terms of material composition, the addition of CeO2 enhanced redox ability of Cu in the MOF-derived catalyst and showed a higher methanol selectivity. The methanol space-time yield was lower in CeO2 supported samples compared to those Al2O3 supported samples, implying that metal surface area was crucial to the performance of the synthesized catalyst.

    In summary, this study demonstrated a facile synthesis method for the fabrication of MOF-derived hybrid nanocatalysts based on gas-phase evaporation-induced self-assembly, showing high performance in the combined hydrogenation of (CO2+CO) to methanol. Through the materials analysis, the impacts of different synthesis parameters on the material properties and the corresponding catalytic activity of the MOF-derived hybrid nanomaterials can be elucidated. Overall, this work showed promise for the applications in the field of CO2 capture and utilization via the development of catalyst material.

    摘要-----------------------------------------------------------------I Abstract-----------------------------------------------------------III 致謝-----------------------------------------------------------------V 目錄----------------------------------------------------------------VI 圖目錄------------------------------------------------------------VIII 表目錄---------------------------------------------------------------X 第一章 緒論-----------------------------------------------------------1 1.1 減碳科技-----------------------------------------------------1 1.2 二氧化碳加一氧化碳氫化反應-------------------------------------3 1.3 混成式奈米觸媒------------------------------------------------6 1.4 金屬-有機框架(Metal-organic frameworks, MOFs)-----------------8 1.5 氣溶膠合成法--------------------------------------------------9 1.6 研究目的----------------------------------------------------11 第二章 實驗方法及儀器------------------------------------------------13 2.1 實驗藥品----------------------------------------------------13 2.2 運用氣溶膠技術進行MOFs與其衍生之材料之生成---------------------14 2.2.1 噴霧乾燥法進行MOF與其衍生材料之合成------------------------------14 2.2.2 兩段式氣相誘導自組裝進行MOF與其衍生材料之合成--------------------19 2.3 分析儀器介紹-------------------------------------------------24 2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)-----------24 2.3.2 X光繞射儀 (X-ray diffraction, XRD)----------------------------25 2.3.3 比表面積與孔隙度分析儀 (Brunauer-Emmett-Teller, BET)------------26 2.3.4 感應耦合電漿發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES)-------------------------------------27 2.3.5 熱重分析儀 (Thermogravimetric Analyzer, TGA)-------------------28 2.3.6 場發射掃描穿透式球差修正電子顯微鏡 (Spherical-aberration Corrected Field Emission TEM)-------------------------------------------------29 2.3.7 化學吸附分析儀-------------------------------------------------30 2.3.8 氣溶膠粒子靜電收集器 (Electrostatic Precipitator)--------------33 2.3.9 氣相奈米粒子流動分析儀 (Differential Mobility Analyzer)---------34 2.4 觸媒催化 (二氧化碳加一氧化碳) 甲醇化反應之活性與穩定性測試-------35 第三章 結果與討論----------------------------------------------------39 3.1 以MOFs-derived 觸媒催化 (二氧化碳+一氧化碳) 甲醇化反應---------40 3.1.1 材料分析------------------------------------------------------40 3.1.2 程溫分析------------------------------------------------------50 3.1.3 觸媒活性測試---------------------------------------------------55 3.1.4 觸媒穩定性測試-------------------------------------------------61 3.2 二段式氣相誘導自組裝與二階段連續熱處理-------------------------65 3.2.1 材料分析------------------------------------------------------65 3.2.2 程溫分析------------------------------------------------------75 3.2.3 觸媒活性測試---------------------------------------------------82 3.2.4 觸媒穩定性測試-------------------------------------------------88 第四章 結論----------------------------------------------------------94 第五章 未來展望------------------------------------------------------96 第六章 參考文獻------------------------------------------------------99 第七章 附錄---------------------------------------------------------109 7.1 氣相層析儀檢量線--------------------------------------------109 7.1.1 GC-TCD檢量線-------------------------------------------------109 7.1.2 GC-FID檢量線-------------------------------------------------109 7.2 鍛燒前金屬前驅物之XRD圖譜及存在形式---------------------------110

    第六章 參考文獻
    1. Abid, H.R., et al., Drastic enhancement of CO2 adsorption capacity by negatively charged sub-bituminous coal. Energy, 2021. 233: p. 120924.
    2. Li, L., et al., A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 2013. 108: p. 112-130.
    3. Mondal, M.K., H.K. Balsora, and P. Varshney, Progress and trends in CO2 capture/separation technologies: A review. Energy, 2012. 46(1): p. 431-441.
    4. Dutcher, B., M. Fan, and A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013—A review. ACS Applied Materials & Interfaces, 2015. 7(4): p. 2137-2148.
    5. Zeng, Y., R. Zou, and Y. Zhao, Covalent organic frameworks for CO2 capture. Advanced Materials, 2016. 28(15): p. 2855-2873.
    6. Leung, D.Y.C., G. Caramanna, and M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014. 39: p. 426-443.
    7. Talapaneni, S.N., et al., Nanostructured carbon nitrides for CO2 capture and conversion. Advanced Materials, 2020. 32(18): p. 1904635.
    8. Zhang, T., et al., CO2 capture and storage monitoring based on remote sensing techniques: A review. Journal of Cleaner Production, 2021. 281: p. 124409.
    9. Chang, R., et al., Synthetic solid oxide sorbents for CO2 capture: state-of-the art and future perspectives. Journal of Materials Chemistry A, 2022. 10(4): p. 1682-1705.
    10. Yu, J., et al., CO2 capture and separations using MOFs: Computational and experimental studies. Chemical Reviews, 2017. 117(14): p. 9674-9754.
    11. Mikulčić, H., et al., Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2. Renewable and Sustainable Energy Reviews, 2019. 114: p. 109338.
    12. Tapia, J.F.D., et al., A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 2018. 13: p. 1-15.
    13. Wang, W.-H., et al., CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chemical Reviews, 2015. 115(23): p. 12936-12973.
    14. Sen, R., et al., Hydroxide based integrated CO2 capture from air and conversion to methanol. Journal of the American Chemical Society, 2020. 142(10): p. 4544-4549.
    15. Geng, Z., et al., One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Scientific Reports, 2016. 6(1): p. 30049.
    16. Al-Mamoori, A., et al., Carbon capture and utilization update. Energy Technology, 2017. 5(6): p. 834-849.
    17. Wang, L. and R.T. Yang, Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. The Journal of Physical Chemistry C, 2012. 116(1): p. 1099-1106.
    18. Ashourirad, B., et al., Exceptional gas adsorption properties by nitrogen-doped porous carbons derived from benzimidazole-linked polymers. Chemistry of Materials, 2015. 27(4): p. 1349-1358.
    19. Seema, H., et al., Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014. 66: p. 320-326.
    20. Kutorglo, E.M., et al., Preparation of carbon-based monolithic CO2 adsorbents with hierarchical pore structure. Chemical Engineering Journal, 2020. 388: p. 124308.
    21. Zhao, Y., H. Ding, and Q. Zhong, Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Applied Surface Science, 2013. 284: p. 138-144.
    22. Gaikwad, S., et al., Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. Journal of Environmental Chemical Engineering, 2021. 9(4): p. 105523.
    23. Chen, C., et al., Highly efficient synthesis of a moisture-stable nitrogen-abundant metal–organic framework (MOF) for large-scale CO2 capture. Industrial & Engineering Chemistry Research, 2019. 58(4): p. 1773-1777.
    24. Gao, G., et al., Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium. Applied Surface Science, 2018. 457: p. 1208-1217.
    25. Qi, S.-C., et al., Rigid supramolecular structures based on flexible covalent bonds: A fabrication mechanism of porous organic polymers and their CO2 capture properties. Chemical Engineering Journal, 2020. 385: p. 123978.
    26. Xu, M., et al., Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture. Chemical Engineering Journal, 2019. 371: p. 693-705.
    27. Xie, K., et al., Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019. 572: p. 38-60.
    28. Ebadi Amooghin, A., et al., Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019. 102: p. 222-295.
    29. Xu, X., et al., High-efficiency CO2 separation using hybrid LDH-polymer membranes. Nature Communications, 2021. 12(1): p. 3069.
    30. Damen, K., et al., A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Progress in Energy and Combustion Science, 2006. 32(2): p. 215-246.
    31. Cavalcanti, L.P., et al., A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature. Scientific Reports, 2018. 8(1): p. 11827.
    32. Alper, E. and O.Y. Orhan, CO2 utilization: Developments in conversion processes. Petroleum, 2017. 3(1): p. 109-126.
    33. Nam, S.-S., et al., Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts. Applied Catalysis A: General, 1999. 179(1-2): p. 155-163.
    34. Inui, T., et al., Hydrogenation of carbon dioxide to C1-C7 hydrocarbons via methanol on composite catalysts. Applied Catalysis A: General, 1993. 94(1): p. 31-44.
    35. Dorner, R.W., et al., Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy & Environmental Science, 2010. 3(7): p. 884-890.
    36. Álvarez, A., et al., Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chemical Reviews, 2017. 117(14): p. 9804-9838.
    37. Jiang, X., et al., Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020. 120(15): p. 7984-8034.
    38. Chen, F., et al., Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method. Applied Catalysis B: Environmental, 2020. 279: p. 119382.
    39. Chen, F., et al., Structure–Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2. ACS Applied Materials & Interfaces, 2021. 13(7): p. 8191-8205.
    40. Huang, R.-Y., et al., Combined hydrogenation of CO2 and CO to methanol using aerosol-assisted metal-organic framework-derived hybrid catalysts. Fuel, 2023. 349: p. 128647.
    41. Zhu, J., et al., Mechanism and nature of active sites for Methanol synthesis from CO/CO2 on Cu/CeO2. ACS Catalysis, 2020. 10(19): p. 11532-11544.
    42. Grabow, L.C. and M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catalysis, 2011. 1(4): p. 365-384.
    43. Witoon, T., et al., CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases. Chemical Engineering Journal, 2016. 293: p. 327-336.
    44. Wang, W., et al., Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011. 40(7): p. 3703-3727.
    45. Ampelli, C., S. Perathoner, and G. Centi, CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015. 373(2037): p. 20140177.
    46. Ma, Z. and M.D. Porosoff, Development of tandem catalysts for CO2 hydrogenation to olefins. ACS Catalysis, 2019. 9(3): p. 2639-2656.
    47. Satthawong, R., et al., Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catalysis Today, 2015. 251: p. 34-40.
    48. Zhong, J., et al., State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chemical Society Reviews, 2020. 49(5): p. 1385-1413.
    49. Le Valant, A., et al., The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures. Journal of Catalysis, 2015. 324: p. 41-49.
    50. Tisseraud, C., et al., The Cu–ZnO synergy in methanol synthesis Part 3: Impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. Journal of Catalysis, 2016. 343: p. 106-114.
    51. Zhu, J., et al., Flame synthesis of Cu/ZnO–CeO2 catalysts: synergistic metal–support interactions promote CH3OH selectivity in CO2 hydrogenation. ACS Catalysis, 2021. 11(8): p. 4880-4892.
    52. Previtali, D., et al., Low pressure conversion of CO2 to methanol over Cu/Zn/Al catalysts. The effect of Mg, Ca and Sr as basic promoters. Fuel, 2020. 274: p. 117804.
    53. Yu, J., et al., Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO2 hydrogenation to methanol. Fuel, 2022. 324: p. 124694.
    54. Pal, T.K., D. De, and P.K. Bharadwaj, Metal-organic frameworks as heterogeneous catalysts for the chemical conversion of carbon dioxide. Fuel, 2022. 320: p. 123904.
    55. Shi, Y., et al., Highly active MIL-68(In)-derived In2O3 hollow tubes catalysts to boost CO2 hydrogenation to methanol. Fuel, 2023. 334: p. 126811.
    56. Hoang, T.T.N., et al., Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. Advanced Powder Technology, 2021. 32(5): p. 1785-1792.
    57. Zhang, P., et al., Urea-derived Cu/ZnO catalyst being dried by supercritical CO2 for low-temperature methanol synthesis. Fuel, 2020. 268: p. 117213.
    58. Olah, G.A., Beyond oil and gas: The methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
    59. Olah, G.A., G.K.S. Prakash, and A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future. Journal of the American Chemical Society, 2011. 133(33): p. 12881-12898.
    60. Rodriguez, J.A., et al., Hydrogenation of CO2 to methanol: Importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catalysis, 2015. 5(11): p. 6696-6706.
    61. Pérez-Fortes, M., et al., Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 2016. 161: p. 718-732.
    62. Kar, S., A. Goeppert, and G.K.S. Prakash, Integrated CO2 capture and conversion to formate and methanol: connecting two threads. Accounts of Chemical Research, 2019. 52(10): p. 2892-2903.
    63. Sordakis, K., et al., Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chemical Reviews, 2018. 118(2): p. 372-433.
    64. Kuld, S., et al., Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016. 352(6288): p. 969-974.
    65. Wang, J., et al., CO2 hydrogenation to methanol over In2O3-based catalysts: From mechanism to catalyst development. ACS Catalysis, 2021. 11(3): p. 1406-1423.
    66. Dang, S., et al., Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity. Science Advances. 6(25): p. eaaz2060.
    67. Wang, Y., et al., Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 2019. 10(1): p. 1166.
    68. Wang, J., et al., High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catalysis, 2019. 9(11): p. 10253-10259.
    69. Zou, T., et al., ZnO-promoted inverse ZrO2–Cu catalysts for CO2-based methanol synthesis under mild conditions. ACS Sustainable Chemistry & Engineering, 2022. 10(1): p. 81-90.
    70. Zhang, L., Y. Zhang, and S. Chen, Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Applied Catalysis A: General, 2012. 415-416: p. 118-123.
    71. Abbas, I., et al., Differences in bifunctionality of ZnO and ZrO2 in Cu/ZnO/ZrO2/Al2O3 catalysts in hydrogenation of carbon oxides for methanol synthesis. Applied Catalysis B: Environmental, 2019. 258: p. 117971.
    72. Asthana, S., K. Tripathi, and K.K. Pant, Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu- based catalysts for conversion of CO2 rich syngas to methanol. Catalysis Today, 2022. 404: p. 154-168.
    73. Dang, S., et al., A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catalysis Today, 2019. 330: p. 61-75.
    74. Dasireddy, V.D.B.C., S.Š. Neja, and L. Blaž, Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2018. 28: p. 189-199.
    75. Deng, Y., et al., Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol. Chemical Engineering Journal, 2022. 435: p. 133554.
    76. Dong, X., et al., CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Applied Catalysis B: Environmental, 2016. 191: p. 8-17.
    77. Gao, P., et al., Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catalysis Science & Technology, 2012. 2(7): p. 1447-1454.
    78. Gao, P., et al., Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013. 298: p. 51-60.
    79. Gao, P., et al., Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2013. 2: p. 16-23.
    80. Gao, P., et al., Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2013. 468: p. 442-452.
    81. Guo, X., et al., The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. Journal of Molecular Catalysis A: Chemical, 2011. 345(1): p. 60-68.
    82. Han, X., et al., Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry, 2022. 71: p. 277-287.
    83. Kobayashi, H., et al., Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems. Chemical Science, 2019. 10(11): p. 3289-3294.
    84. Kourtelesis, M., K. Kousi, and D.I. Kondarides CO2 hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al2O3 catalysts: A kinetic and mechanistic study. Catalysts, 2020. 10, DOI: 10.3390/catal10020183.
    85. Li, M.M.-J., et al., Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. Journal of Catalysis, 2016. 343: p. 157-167.
    86. Li, M.M.J., et al., CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catalysis, 2018. 8(5): p. 4390-4401.
    87. Lin, F., et al., Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2019. 585: p. 117210.
    88. Nguyen Hoang, T.T. and D.-H. Tsai, Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster. Applied Catalysis A: General, 2022. 645: p. 118844.
    89. Nitta, Y., et al., Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO2 catalysts. Catalysis Letters, 1994. 26(3): p. 345-354.
    90. Peinado, C., et al. In situ conditioning of CO2-rich syngas during the synthesis of methanol. Catalysts, 2021. 11, DOI: 10.3390/catal11050534.
    91. Phongamwong, T., et al., CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: Effects of SiO2 contents. Chemical Engineering Journal, 2017. 316: p. 692-703.
    92. Ren, S., et al., Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation. Fuel, 2019. 239: p. 1125-1133.
    93. San, X., et al., Highly dispersed Cu/Graphene nanocatalyst guided by MOF structure: Application to methanol synthesis from CO2 hydrogenation. ChemistrySelect, 2021. 6(24): p. 6115-6118.
    94. Shi, Z., et al., CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature. Journal of Catalysis, 2019. 379: p. 78-89.
    95. Stolar, T., et al., Scalable mechanochemical amorphization of bimetallic Cu−Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Applied Materials & Interfaces, 2021. 13(2): p. 3070-3077.
    96. Sun, Y., et al., Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions. Journal of CO2 Utilization, 2020. 37: p. 55-64.
    97. Tada, S. and S. Satokawa, Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2. Catalysis Communications, 2018. 113: p. 41-45.
    98. Ye, R.-P., et al., CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019. 10(1): p. 5698.
    99. Gaikwad, R., A. Bansode, and A. Urakawa, High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2016. 343: p. 127-132.
    100. Hsueh, Y.-A., et al., Aerosol-assisted synthesis of metal–organic framework-derived hybrid nanomaterials for reverse water–gas shift reaction. ACS Applied Nano Materials, 2022. 5(7): p. 8883-8893.
    101. Ay, S., M. Ozdemir, and M. Melikoglu, Effects of magnesium and chromium addition on stability, activity and structure of copper-based methanol synthesis catalysts. International Journal of Hydrogen Energy, 2021. 46(24): p. 12857-12873.
    102. Wang, H.-L., et al., Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis. ACS Applied Materials & Interfaces, 2018. 10(11): p. 9332-9341.
    103. Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
    104. Wang, Q. and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020. 120(2): p. 1438-1511.
    105. Liang, T.-Y., et al., Bimetallic metal–organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming. ACS Applied Materials & Interfaces, 2020. 12(13): p. 15183-15193.
    106. Zhang, F., et al., CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal–organic framework precursor for preferential CO oxidation. Catalysis Communications, 2012. 26: p. 25-29.
    107. Zamaro, J.M., et al., HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation. Chemical Engineering Journal, 2012. 195-196: p. 180-187.
    108. Kubo, M., R. Moriyama, and M. Shimada, Facile fabrication of HKUST-1 nanocomposites incorporating Fe3O4 and TiO2 nanoparticles by a spray-assisted synthetic process and their dye adsorption performances. Microporous and Mesoporous Materials, 2019. 280: p. 227-235.
    109. Yang, C.-M., et al., Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. Advanced Powder Technology, 2022. 33(1): p. 103365.
    110. Xia, W., et al., Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 2015. 8(7): p. 1837-1866.
    111. Mai, H.D., K. Rafiq, and H. Yoo, Nano metal-organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chemistry – A European Journal, 2017. 23(24): p. 5631-5651.
    112. Cai, Z.-X., et al., Hollow functional materials derived from metal–organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications. Advanced Materials, 2019. 31(11): p. 1804903.
    113. Cao, C., et al., Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Advanced Functional Materials, 2019. 29(6): p. 1807418.
    114. Jiang, Y., et al., Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chemical Engineering Journal, 2019. 371: p. 78-87.
    115. Zhang, A., et al., Spray-drying-assisted reassembly of uniform and large micro-sized MIL-101 microparticles with controllable morphologies for benzene adsorption. Journal of Colloid and Interface Science, 2017. 506: p. 1-9.
    116. Ji, H., et al., Improvement in crystallinity and porosity of poorly crystalline metal–organic frameworks (MOFs) through their induced growth on a well-crystalline MOF template. Inorganic Chemistry, 2018. 57(15): p. 9048-9054.
    117. Peterson, A.K., D.G. Morgan, and S.E. Skrabalak, Aerosol synthesis of porous particles using simple salts as a pore template. Langmuir, 2010. 26(11): p. 8804-8809.
    118. Chang, H. and H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications. Advanced Powder Technology, 2014. 25(1): p. 32-42.
    119. Carné-Sánchez, A., et al., A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chemistry, 2013. 5(3): p. 203-211.
    120. Troyano, J., et al., Spray-drying synthesis of MOFs, COFs, and related composites. Accounts of Chemical Research, 2020. 53(6): p. 1206-1217.
    121. Sun, J., H.T. Kwon, and H.-K. Jeong, Continuous synthesis of high quality metal–organic framework HKUST-1 crystals and composites via aerosol-assisted synthesis. Polyhedron, 2018. 153: p. 226-233.
    122. Tse, J.Y., et al., Crystalline rearranged CD-MOF particles obtained via spray-drying synthesis applied to inhalable formulations with high drug loading. Crystal Growth & Design, 2022. 22(2): p. 1143-1154.
    123. Pujales-Paradela, R., et al., Luminescent magnets: hybrid supraparticles of a lanthanide-based MOF and ferromagnetic iron oxide by assembly in a droplet via spray-drying. Journal of Materials Chemistry C, 2022. 10(3): p. 1017-1028.
    124. Rubio-Martinez, M., et al., New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017. 46(11): p. 3453-3480.
    125. Gupta, A., U.V. Waghmare, and M.S. Hegde, Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation. Chemistry of Materials, 2010. 22(18): p. 5184-5198.
    126. Li, P., et al., A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catalysis Today, 2019. 327: p. 90-115.
    127. Jiang, F., et al., Dependence of copper particle size and interface on methanol and CO formation in CO2 hydrogenation over Cu@ZnO catalysts. Catalysis Science & Technology, 2022. 12(2): p. 551-564.
    128. Zhao, Y., A. Jalal, and A. Uzun, Interplay between copper nanoparticle size and oxygen vacancy on Mg-doped ceria controls partial hydrogenation performance and stability. ACS Catalysis, 2021. 11(13): p. 8116-8131.
    129. Wu, G., et al., Fluorine-modified Mg–Al mixed oxides: A solid base with variable basic sites and tunable basicity. Applied Catalysis A: General, 2010. 377(1): p. 107-113.
    130. Chen, F., et al., Improved catalytic activity and stability of Cu/ZnO catalyst by boron oxide modification for low-temperature methanol synthesis. Chemical Engineering Journal, 2023. 458: p. 141401.
    131. Singh, R., et al., Unravelling synergetic interaction over tandem Cu-ZnO-ZrO2/hierarchical ZSM5 catalyst for CO2 hydrogenation to methanol and DME. Fuel, 2022. 318: p. 123641.
    132. Mondal, U. and G.D. Yadav, Perspective of dimethyl ether as fuel: Part I. Catalysis. Journal of CO2 Utilization, 2019. 32: p. 299-320.
    133. Zhang, Q., et al., Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catalysis Today, 2010. 150(1): p. 55-60.

    QR CODE