簡易檢索 / 詳目顯示

研究生: 鄭元翔
論文名稱: On Sensing-Delay Tradeoffs for Cognitive Radio Networks
感知無線電網路中頻譜偵測效能與封包延遲之權衡關係探討
指導教授: 王晉良
口試委員: 張仲儒
王晉良
陳紹基
馮世邁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 感知無線電頻譜偵測服務質量
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感知無線電(cognitive radio)技術具備有效解決頻譜不足使用之能力。為了提升頻譜的使用效率,次要使用者(secondary user)可以在主要使用者(primary user)不存在的情況下使用其頻帶來傳送資料。基於保護主要使用者不受到次要使用者的干擾,感知無線電系統需要可靠的頻譜偵測(spectrum sensing)技術。在此篇論文中,為了有比較低的運算複雜度,我們使用能量偵測器(energy detector)來探知主要使用者的動態。
    為了保護主要使用者,次要使用者必須在傳送資料之前透過頻譜偵測技術得知主要使用者的動態。然而,探知主要使用者的動態所需要的時間可能會增加次要使用者的封包延遲;對於一個即時(real-time)的應用程式而言,封包延遲過大對其效能會有所影響。在週期性頻譜偵測架構(periodic sensing frame structure)中,偵測時間越長意謂著次要使用者需要等待越長的時間才能開始傳送資料。因此,封包延遲可能會隨著偵測時間的增加而增加。然而,偵測時間越短意謂著誤警機率(probability of false alarm)越高,所以封包延遲也可能會隨著偵測時間的減少而增加。
    在此篇論文中,我們發現頻譜偵測效能與次要使用者的封包延遲之間存在一種權衡關係。之後我們建立一個封包的傳遞模型來探討封包延遲與頻譜偵測效能之間的關係,並且提出一個全新的目標函數。經由牛頓法(Newton’s method),我們可以找到一個最佳的偵測時間使得封包的延遲最小。但是在求解最佳偵測時間的過程中,必須要滿足對主要使用者的保護以及次要使用者的服務質量(quality of service)。根據電腦模擬結果,我們可以發現理論結果跟模擬結果幾乎相符。除此之外,我們解出來的最佳偵測時間一定能滿足感知無線電系統的使用需求。


    Cognitive radio (CR) which is one of the candidate communication techniques for solving the spectrum scarcity problem. In order to enhance the spectrum-usage efficiency, secondary users (SUs) are allowed to operate over the licensed bands while the bands are not being used by primary users (PUs) at a particular time or specific geographic area. CR systems require reliable spectrum sensing to protect communications of PUs from interference of SUs. In this thesis, an energy detector is equipped for spectrum sensing because of the low computational complexity.
    In consideration of protecting PUs, the CR users must perform spectrum sensing before transmitting data. However, the spectrum sensing periods arranged in the frame makes the packet delay of CR transmissions increasing; a large packet delay is harmful to real-time applications. In the periodic sensing frame structure, the longer the sensing time, the later the SUs begin to transmit data. Hence, the packet delay may increase with the increasing of the sensing time. However, the shorter the sensing time, the higher the false alarm happened; the packet delay may increase with the decreasing of the sensing time.
    In this thesis, we address a new sensing issue in which a tradeoff exists between sensing capability and the packet delay of SUs. Furthermore, we construct a novel scheme and formulate the issue as a convex optimization problem. Then, by using the Newton’s method, we can find an optimal sensing time with a minimal packet delay; the constraints include the requirement of the protection with PUs and the QoS of SUs. Computer simulation results indicate the theoretical result matches with the simulated result very well. In addition, the optimal sensing time in the proposed scheme satisfy the requirements of the CR systems in the IEEE 802.22.

    Abstract i Contents iii List of Figures v Chapter 1 Introduction 1 1.1 Background 1 1.2 Spectrum Hole 1 1.3 Cognitive Radio 2 1.4 Quality of Service 3 1.5 Outline of the Thesis 5 Chapter 2 Related Works 7 2.1 Basic Concepts of CR 7 2.2 Spectrum Sensing Techniques 8 2.2.1 Energy Detector 9 2.2.2 Matched Filter Detector 11 2.2.3 Cyclostationary Feature Detector 12 2.3 Periodic Sensing Frame Structure 13 2.3.1 Relation between Sensing Capability and the Throughput 13 2.3.2 Relation between Sensing Capability and the Packet Delay 15 2.4 Motivation 16 Chapter 3 The Proposed Optimization Problem for the Sensing-Delay Tradeoff 19 3.1 System Model 19 3.2 The Proposed Scheme 20 3.2.1 Flow Chart of Spectrum Sensing 20 3.2.2 Problem Formulation 21 3.2.3 QoS Constraints 24 3.2.4 Optimization Algorithm by Using the Newton’s Method 25 Chapter 4 Simulation Results 31 Chapter 5 Conclusions 42 Bibliography 44

    [1] Federal Communications Commission, “Spectrum policy task force report,” Rep. ET Docket no. 02-155, Nov. 2002.
    [2] J. Mitola and G. Q. Maguire, “Cognitive radios: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999.
    [3] J. Mitola, “Cognitive radio: An integrated agent architecture for software defined radio,” Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden, 2000.
    [4] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, pp. 201-220, Feb. 2005.
    [5] H. Jonathan Chao and X. Guo, Quality of Service Control in High-Speed Networks, New York: Wiley, 2002.
    [6] Z. Wang, Internet QoS: Architectures and Mechanisms for Quality of Service, San Francisco: Morgan Kaufmann, 2001.
    [7] IEEE, “part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV bands,” IEEE Std. 802.22, Jul. 2011.
    [8] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection of unknown signals over fading channels,” in Proc. 2002 IEEE Int. Conf. Commun. (ICC ‘2003) , pp. 3575-3579, May 2003.
    [9] J. Hillenbrand, T. A. Weiss, and F. Jondral, “Calculation of detection and false alarm probabilities in spectrum pooling systems” IEEE Commun. Lett., vol. 9, no. 4, pp. 349-351, Apr. 2005.
    [10] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc. IEEE, vol. 55, pp. 523-531, Apr. 1967.
    [11] Z. Ye, G. Memilk, and J. Grosspietsch, “Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks,” in Proc. 2008 IEEE Wireless Commun. And Netw. Conf. (WCNC 2008), Mar.-Apr., pp. 711-716.
    [12] H. Cramér, Mathematical Methods of Statistics. Princeton, NJ: Princeton Univ. Press, 1999.
    [13] P. R. Nair, A. P. Vinod, and A. K. Krishna, “A fast two stage detector for spectrum sensing in cognitive radios,” in Proc. 2011 IEEE Veh. Technol. Conf. - Fall (VTC 2011-Fall), San Francisco, CA, Sept. 2011.
    [14] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stocastic Processes, 4th ed. New York: McGraw-Hill, 2002.
    [15] Y.-C. Liang, Y. Zeng, E. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1326–1337, Apr. 2008.
    [16] G. Turin, “Minimax strategies for matched-filter detection,” IEEE Trans. Commun., vol. 23, no.11, pp. 1370-1371, Nov. 1975.
    [17] D. Cabric, S. M. Mishra, and R. Brodersen, ”Implementation issues in spectrum sensing for cognitive radios,” in Proc. 38th Asilomar Conf. Signals, Systems and Computers (ACSSC ’04), Pacific Grove, CA, Nov. 2004, pp. 772-776.
    [18] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. Allerton Conf. Communication, Control, and Computing, Oct. 2004, pp. 131–136.
    [19] P. D. Sutton, K. E. Nolan, and L. E. Doyle, “Cyclostationary signatures in practical cognitive radio applications,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 13-24, Feb. 2008.
    [20] S. Hakin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE, vol. 97, pp. 849-877, May 2009.
    [21] R. Deng, S. Maharjan, X. Cao, J. Chen, Y.Zhang, and S. Gjessing, “Sensing-delay tradeoff for communication in cognitive radio enabled smart grid,” in Proc. 2011 IEEE Int. Conf. Smart Grid Communications (SmartGridComm 2011), Brussels, Oct. 2011, pp.155-160.
    [22] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability &Statistics for Engineers & Scientists, Boston, Mass. : Pearson, 2012.
    [23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE