簡易檢索 / 詳目顯示

研究生: 何彥政
Yen-Cheng Ho
論文名稱: 交流電漿顯示器條紋現象中的非局部性
The non-locality of striation phenomenon in plasma display panel
指導教授: 柳克強
Keh-Chyang Leou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 87
中文關鍵詞: 電漿顯示器條紋現象非局部性
外文關鍵詞: plasma display panel, striation, non-locality
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 用一個放大尺度的電漿顯示器放電槽來研究市售電漿顯示器中的條紋現象(striation)。此放電槽根據乘倍定理(scaling law)以放大係數50倍放大。蜂巢型的放電槽則由兩個T型電極和一個不對稱的設置(位設置於陰極和楊極的中線上)於背板之定址電極所構成。利用超快速照相機擷取其放電的動態影像,顯示由於不對稱之電極配置造成的不對稱分布電場使得陽極上條紋現象更為不對稱的發展。改變驅動波型的脈衝寬度和維持電壓的大小來研究壁電荷累積效應對條紋現象發展的影響。在一些特定的參數值下,可以觀察到一些如條紋的擬干涉現象,條紋的分支現象等的有趣實驗結果。根據這些觀測到的數據,討論條紋現象的非局部特性。並利用留體模型模擬電漿顯示器的放電,以了解在陽極區域的放電狀態是否屬於非局部描述的範圍。我們也將討論電漿顯示器中條紋現象之生成機制源於電子運動之非局部特性的可能。而由該機制導出的許多重要特徵指出前一個脈衝放電的壁電荷累積分布對此一次放電中的條紋現象發展十分重要。以此觀之,我們可推論:施與電場一點非對稱的效應下,可簡單的以改變驅動波型的脈衝寬度和維持電壓大小而引發不同的放電”模式”。


    A macroscopic plasma display panel cell is employed to study the striation phenomenon occurring in the discharge of a much smaller commercial AC-plasma display panel (PDPs) cell. The macro-cell is designed based on the scaling law with a scaling factor of 50. The honeycomb shaped macro-cell has symmetric coplanar T-shaped electrodes and a data electrode asymmetrically placed with an offset in direction perpendicular to the cathode-to-anode direction, i.e., the data electrode is not placed on the central line of the cell. Measurement of images by an intensified charged coupled device (ICCD) camera shows that the asymmetric electric field profile due to asymmetric electrode configuration causes the development of striations quite asymmetric on the anode. Pulse width and sustain voltage of the driving waveform are also changed to study how charge accumulation effect influences the striation development profile. Some interesting phenomena such as the interference- like phenomenon of striation and “branching” of striation development are observed under some specific range of parameter values. The non-local properties of the striation are discussed based on the observed phenomena. Simulation based on fluid model is conducted to show the discharge conditions on the anode during the development of striation to determine if the electron kinetics is in the non-local regime. The possible mechanism for striation formation arisen from the non-locality of electron kinetics in AC-PDP is also discussed. Some important characteristics derived from this mechanism for striation formation indicate that wall charge accumulation process in the previous pulse is quite important to the development of striation. In view of this, we can show that while a little asymmetry is imposed on the electric field, different “mode” of discharge evolution profile can be simply induced by varying the sustain voltage and pulse width of driving waveform.

    中文摘要 I Abstract II 致謝 IV Chapter 1. Introduction 1 Chapter 2. Introduction and recent development of striation theory in low temperature DC discharge. 3 Chapter 3. Discharge characteristic in AC-PDP. 7 3.1 Dielectric barrier discharge in glow discharge regime. 7 3.2 Wall charge in coplanar AC-PDP. 8 3.3 Reactions in the discharge of AC-PDP. 11 3.4 Discharge characteristic in a sustain pulse. 14 Chapter 4. Past investigation on striation in AC-PDP. 19 Chapter 5. Discharge condition analysis in AC-PDP. 31 5.1 The electron relaxation length. 32 5.2 Simulation study on the discharge condition. 35 5.3 The mechanism of striation formation in DC positive column. 40 5.4 Proposed striation formation mechanism in AC-PDP. 44 Chapter 6. Investigation method. 47 6.1 Introduction to setup and principle of experiment system and simulation tool.47 6.1.1 The macro-cell. 47 6.1.1.1 The similarity law. 47 6.1.1.2 Review of macro-cell experiment. 52 6.1.1.3 Consideration on dielectric and its width. 54 6.1.2 Intensified CCD camera image recording system. 55 6.1.3 Simulation: fluid model with energy equation. 57 6.2 experimental setup. 57 Chapter 7. Experimental results and discussion. 61 7.1 On the non-locality of electron kinetics of striation phenomenon. 61 7.1.1The normal development of striation phenomenon (2nd pulse). 61 7.1.2 The interference-like phenomenon(9th pulse). 63 7.1.2.1 Description of the phenomenon. 63 7.1.2.2 Fail to explain the phenomenon via “local” approach. 65 7.1.2.3 The non-locality of electron kinetics in striation. 67 7.1.3 “Branching” of striation development. 72 7.2 Other factors to affect the development of striation. 73 7.2.1 The effect of ion surface charge accumulated on anode in the previous pulse. 73 7.2.2 The electrode source from cathode region. 79 Chapter 8. Conclusion. 83 Reference. 85

    1. J. P. Boeuf J. Phys. D: Appl. Phys. 36 (2003) R53–R79
    2. G. Cho, E.-H. Choi, Y.-G. Kim, D.-I. Kim, H. S. Uhm, Y.-D. Joo, J.-G.Han, M.-C. Kim, and J.-D. Kim, J. Appl. Phys. 87, 4113 (2000).
    3.Shon C H and Lee J K Phys. Plasmas 8 1070 (2001)
    4. Yoshioka T, Tessier L, Okigawa A and Toki K J. SID 8 ,203 (2000)
    5.Schroeder, H “History of electric light.” Smithsonian Institution, Harrison
    6. Th. Callegari, R. Ganter, and J. P. Boeuf, J. Appl. Phys. 88, 3905 (2000)
    7. Callegari T and Boeuf J P J. Appl. Phys. 91 992 (2002)
    8. Callegari T and Boeuf J P J. Appl. Phys. 91 1000 (2002)
    9. C. Punset, J.-P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 83, 1884 (1998).
    10. J. P. Boeuf, C. Punset, A. Hirech, and H. Doyeux, J. Phys. IV 7, CIV-3 (1997).
    11. C. Punset, S. Cany, and J. P. Boeuf, J. Appl. Phys. 86, 124 (1999)
    12. Yu. Raizer, Gas Discharge Physics Springer ~Verlag Berlin, (1991)
    13. L. Pekarek, Sov. Phys. Usp. 11, 188 (1968)
    14. L.J Denes, J.J. Lowke Appl. Phys. Lett. 23, 130 (1973)
    15. G. Francis “The low glow discharge at low pressure”, in Encyclopedia of Physics, ed by s. Flugge, Handbunch der physic Bs XXII (Springer Berlin 1956), pp.52-208
    16.A. Garscadden: “Ionization waves” in Gaseous Electronics I. Electrical discharges. Ed. By M.N. Hirsh, H.J. Oskam (1978)
    17. P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys. Usp. 23, 813 (1980).
    18. A. Garscadden Phys. Fluids. 12, 1833, (1969)
    19.H. Derfler, in proceeding of the Fifth International Conference on Phenomena inIonized Gas
    20. S.W. Rayment J. phys. D.: Appl. Phys. 7, 871, (1974)
    21. Yu.B. Golubovskii, R.V. Kozakov, V.A. Maiorov, J. Behnke, and J.F. Behnke, Phys. Rev. E 62, 2707 (2000)
    22. T. Ruzicka and K. Rohlena, Czech. J. Phys., Sect. B 22, 906 (1972)
    23. T. Ruzicka and K. Rohlena, Czech. J. Phys., Sect. B 25, 660 (1975).
    24.T. Ruzicka, K. Rohlena, and L. Pekarek, Phys. Lett. 40A, 3, 239 (1972).
    25. H. Beuder and K. Muller, Z. Phys. 263, 299 (1973).
    26. H. Lergon and K. Muller, Z. Phys. 268, 157 (1974)
    27. L.D Tsedin Sov. J. Plasma Phys. 8, 228 (1982).
    28. F. Sigeneger and R. Winkler, Contrib. Plasma Phys. 36, 551 (1996).
    29.D Loffhagen and R Winkler J. Phys. D: Appl. Phys. 34 (2001) 1355–1366
    30. Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall J. Appl. Phys. 86, 2431 (1999)
    31. J. Meunier, P. Belenguer, and J. P. Boeuf, "Numerical model of an ac plasma display panel cell in neon-xenon mixtures", J Appl Phys. Vol 78, p.731 (1995).
    32. K. Hagiwara et al,. “Side-View Observations of IR Emission from Surface-discharge AC-PDP.” IDW ’99, pp.615~618.
    33. L. F. Weber, “Status and Trends of Plasma Display Research.” EuroDisplay ’99, Berlin, Germany, September 1999(unpublished)
    (see http://www.plasmaco.com/LarryPaper/paper.html)
    34 T. Yoshioka, A. Okigawa, L. Tessier, and K. Toki, Proceedings of the Sixth International Display Workshop ’99, Sendai, Japan, 1999 ~Society for Information Display, (1998), p. 603.
    35. Yoshioka T, Tessier L, Okigawa A and Toki K J. SID 8 ,203 (2000)
    36. Shon C H and Lee J K 2001 Phys. Plasmas 8 1070 (2001)
    37 G. Cho, E.-H. Choi, Y.-G. Kim, D.-I. Kim, H. S. Uhm, Y.-D. Joo, J.-G.Han, M.-C. Kim, and J.-D. Kim, J. Appl. Phys. 87, 4113 (2000).
    38. A.A.Kudryavtesv et al, “A Physic Model of the Short Glow Discharge in Plasma Display Panels”, Technical Physics Letters, vol.27, No.4, pp.284 (2001)
    39.陳龍志 國立清華大學工程與系統科學研究所九十二年碩士論文,(2003)
    40. Vladimir I. Kolobov, Valery A. Godyak IEEE Trans. Plasma Sci. 23 503, (1995)
    41. D Loffhagen, R Winkler and Z. Donko Eur. Phys. J. AP 18 189 (2002)
    42.張俊霖國立清華大學工程與系統科學研究所九十一年碩士論文,(2002)
    43.F.Sigeneger and R. Winkler Plasma Chem. Plasma Process. 17 1, (1996)
    44. F.Sigeneger and R. Winkler Plasma Chem. Plasma Process. 17 281, (1996)
    45. http://www.siglo-kinema.com/bolsig.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE