研究生: |
黃柏豪 Po-Hao Huang |
---|---|
論文名稱: |
長程影像串列包含資訊遮蔽情形中,以分解為基礎,強固的三維重建方法 Robust Long-Term Factorization-based SfM with Occlusions |
指導教授: |
賴尚宏
Shang-Hong Lai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 三維重建 、相機校正 、遮蔽 、消失 、錯誤對應 、基本矩陣 、長程 、強固 、分解 |
外文關鍵詞: | Structure from Motion, Self-Calibration, Occclude, Missing, Outliers, Fundamental Matrix, Long-term, Robust, Factorization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從影像中重建物體的三維模型,在電腦視覺領域裡一直是一個很有趣且很有挑戰性的問題。從運動求得結構(Structure from motion)是其中一種從影像中重建物體三維結構的方法。在這篇論文中,我們提出了一個強固的長程影像三維重建方法,同時這個方法也克服了對應點找尋錯誤或是被遮蔽的問題。
針對對應點被遮蔽(Occluded or Missing)的問題,這種問題特別容易發生在長程影像中,我們提出了一個新的方法來處理因為這些消失的資料而產生的問題。藉由把長程影像分割成很多的區段影像列,憑藉每個區段影像彼此有覆蓋兩張影像以上的條件,將看得到的對應點資訊擴散分布到那些消失的點資訊,進而猜得那些消失的點原本應該存在的位置。而那些被猜測出來的點正如同真正的影像對應點加上某種程度的高斯雜訊(Gaussian Noise)。沒有使用任何校正(registration)的方法,這個方法很直接且在實際應用上運作的相當良好。
針對對應點找尋錯誤(Outliers)的問題,我們提出了將RANSAC理論套用到Projective Factorization的方法上。加上一些修改,我們在一次的取樣中,可以拿到更多的inliers,藉此減少最大的取樣次數。最後,藉著最小化(minimize)那些看得到而且被認為是inlier點的投影誤差,我們提出一個改良的方法去修正我們求得的模型,進而得到更符合所有資料的模型。
實驗結果分別呈現在模擬以及真實的資料,以驗證我們方法的強固性。
3D modeling from images is an interesting and challenging problem in computer vision. Structure from motion (SfM) is a method that reconstruct 3D model from images. In this thesis, we propose a robust long-term SfM algorithm to reconstruct 3D models. This method overcomes the problems due to tracking errors and occlusion.
For the problem of occlusions, especially occurs in the long-term sequence, we propose a new scheme for dealing with the missing data. Base on the idea of dividing image sequence into overlapped sub-sequences and then propagating points from the visible ones to the occluded ones. Those putative points are treated as the actual image points with some level of Gaussian Noise. Without any registration methods, this approach is straight-forward and works well in practice.
To achieve robustness against outliers, we propose a robust SfM algorithm by applying the adaptive RANSAC technique on the projective factorization method. With slightly modifying the adaptive RANSAC algorithm, we obtain more inliers in one sample, thus reducing the maximal sampling times. Furthermore, to minimize the re-projection errors of the visible points considered as inliers, we propose a refinement algorithm to refine the model.
Experimental results on both synthetic and real data show the robustness of the proposed algorithm.
[A. Fusiello, 2000] A. Fusiello. Uncalibrated Euclidean reconstruction: a review. Image and Vision Computing, 18, 555-563, 2000.
[A. Heyden, 1999] A. Heyden, R. Berthilsson and G. Sparr. An iterative factorization method for projective structure and motion from image sequences. Image Vision and Computing, 17, pages 981-991, 1999.
[A. W. Fitzgibbon, 1998] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image sequences. In Proc. European Conference on Computer Vision, pages 311-326, Springer-Verlag, June 1998.
[B. Triggs, 1996] B. Triggs. Factorization methods for projective structure and motion, In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 845-851, 1996.
[C. Tomasi, 1992] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization approach. International Journal of Computer Vision, 9(2):137-154, November 1992.
[M. Han, 2000] M. Han and T. Kanade. Creating 3D models with uncalibrated cameras. IEEE Computer Society Workshop on the Application of Computer Vision, 9(2), 137-154, 2000.
[M. Pollefeys, 1999] M. Pollefeys. Self calibration and metric 3D reconstruction from uncalibrated image sequences. PhD thesis, ESAT-PSI, K. U. Leuven, 1999.
[Oxford] “Visual Geometry Group Oxford”, http://www.robots.ox.ac.uk/~vgg/data/
[O. D.Faugeras, 1992] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In Proc. European Conference on Computer Vision, LNCS 588, pages 563-578. Springer-Verlag, 1992.
[P. Sturm, 1996] P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In Proc. European Conference on Computer Vision, pages 709-720, 1996.
[Q. Chen, 1999] Q. Chen and G. Medioni. Efficient, iterative solution to M-view projective reconstruction problem. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1, pages 55-61, 1999
[R. I. Hartley, 1992] R. I. Hartley. Invariants of points seen in multiple images. GE internal report, GE CRD, Schenectady, NY12301, USA, May 1992.
[R. I. Hartley, 1997] R. I. Hartley. In defense of the eight-point algorithm. In Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), pages 580-593, October, 1997.
[R. I. Hartley, 2000] R. I. Hartley and A. Zisseman. Multiple View Geometry. Cambridge Univ. Press, 2000.
[S. Mahamud, 2000] S. Mahamud and M. Hebert. Iterative projective reconstruction from multiple views. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2, pages 430-437, 2000.