研究生: |
陳雅慈 Chen, Ya-Tzu |
---|---|
論文名稱: |
利用光介電泳力操控聚苯乙烯微球作為可調式光學共振腔 Tunable Optical Resonators by Manipulating Polystyrene Microspheres through Image-Controlled Dielectrophoretic Force |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
李國賓
Lee, Gwo-Bin 范士岡 Fan, Shih-Kang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 耳語廊模態 、光學微球共振腔 、光介電泳 |
外文關鍵詞: | whispering gallery modes (WGM), optical microsphere resonator, optically-induced dielectrophoresis(ODEP) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學微球型共振腔因具有高品質因子與小模場體積等特點,被廣泛地運用在光通訊、非線性光學、染料雷射和生物感測等領域。光在球型共振腔的共振模態WGM(Whispering-gallery Modes)一般是透過耦光元件消逝場耦合(Evanescent field coupling)而激發,如何調控共振腔與耦光元件之間的耦合距離是極為重要的課題。
本研究將微流體系統與光學系統加以整合,提出了一個可調式光學共振腔的構想,利用投影機的光誘發光介電泳力(optically-induced dielectrophoresis)操控微米球共振腔,微調共振腔與單模脊狀波導之間的距離。我們在光電泳晶片內滴入混有聚苯乙烯球(n=1.571)的蔗糖水溶液(n=1.399),並以SU-8負光阻(n=1.569)製作波導結構於晶片上。經由實驗測試發現,我們可以操控聚苯乙烯球並控制與光波導維持一穩定的距離;經量測光波導的穿透頻譜,藉由頻譜上峰值的深度與半高寬,可將聚苯乙烯球與光波導操作在過耦合(over-coupling),近臨界耦合(near critical-coupling),和弱耦合(under-coupling condition)等三種情況。
本研究成功地利用光介電泳晶片操控聚苯乙烯微米球,作為一可調式的光學共振腔,此元件最顯著的特點為可藉由一低功率的投影機,控制光學共振腔的耦合條件。
Optical microsphere resonators are widely applied in various fields including, optical communications, researches on nonlinear optical effect, dye lasers, and label free detection for biosensing , due to the high quality factor and small mode volume. However, to effectively excite the microsphere resonator is challenging since the external light should be coupled to the resonant modes, or called whispering gallery modes (WGM), with a precisely controlled distance.
In this study, a new integrated microsphere resonator optofluidic device is presented. The microsphere resonators are manipulated by optically-induced dielectrophoresis(ODEP) for precisely tuning the coupling distance between the resonator and a single mode rib waveguide. We fabricate single mode rib waveguide structure made by SU-8(n=1.569) on the ODEP device, with polystyrene beads(PSB, n=1.571) of 100-μm diameter were suspended in a liquid chamber with high-density sucrose solution (n=1.397). We have manipulated PSB which is pushed away and keeps a stable distance from the waveguide. Through measuring transmittance spectra at different coupling distance, PSB is operated at the over-coupling, near critical-coupling and under-coupling condition, respectively, by examining the transmission dips of the spectra.
We have successfully realized a compact optofluidic platform for studying tunable microsphere optical resonators in an aqueous medium. Asalient feature of this platform is that the microsphere can be freely operated in any of the coupling conditions via a low-power image
projector.
[1] S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature, vol. 415, pp. 621-623, Feb 2002.
[2] M. Cai, G. Hunziker, and K. Vahala, "Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system," Ieee Photonics Technology Letters, vol. 11, pp. 686-687, Jun 1999.
[3] M. Hossein-Zadeh and K. J. Vahala, "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Optics Express, vol. 15, pp. 166-175, Jan 2007.
[4] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "QUALITY-FACTOR AND NONLINEAR PROPERTIES OF OPTICAL WHISPERING-GALLERY MODES," Physics Letters A, vol. 137, pp. 393-397, May 1989.
[5] I. S. Grudinin, V. S. Ilchenko, and L. Maleki, "Ultrahigh optical Q factors of crystalline resonators in the linear regime," Physical Review A, vol. 74, Dec 2006.
[6] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Nonlinear optics and crystalline whispering gallery mode cavities," Physical Review Letters, vol. 92, Jan 2004.
[7] J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. D. Fan, "Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides," Optics Letters, vol. 35, pp. 2997-2999, Sep 2010.
[8] S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, et al., "A multi-color fast-switching microfluidic droplet dye laser," Lab on a Chip, vol. 9, pp. 2767-2771, 2009.
[9] A. M. Armani, "Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007)," Science, vol. 334, pp. 1496-1496, Dec 2011.
[10] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Optics Letters, vol. 28, pp. 272-274, Feb 2003.
[11] F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: label-free detection down to single molecules," Nature Methods, vol. 5, pp. 591-596, Jul 2008.
[12] J. Lutti, W. Langbein, and P. Borri, "High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers," Applied Physics Letters, vol. 91, Oct 2007.
[13] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 2005.
[14] B. E. Little, J. P. Laine, and H. A. Haus, "Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators," Journal of Lightwave Technology, vol. 17, pp. 704-715, Apr 1999.
[15] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics 2ed.: Wiley-Interscience, 2007.
[16] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," Journal of Lightwave Technology, vol. 15, pp. 998-1005, Jun 1997.
[17] K. Okamoto, Fundamentals of Optical Waveguides, 2 ed.: Academic Press, 2006.
[18] J.-m. Liu, Photonic Devices: Cambridge University Press, 2009.
[19] R. A. Soref, J. Schmidtchen, and K. Petermann, "LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2," Ieee Journal of Quantum Electronics, vol. 27, pp. 1971-1974, Aug 1991.
[20] K. Petermann, "PROPERTIES OF OPTICAL RIB-GUIDES WITH LARGE CROSS-SECTION," Aeu-International Journal of Electronics and Communications, vol. 30, pp. 139-140, 1976.
[21] N. Dagli and C. G. Fonstad, "Analysis of rib dielectric waveguides," IEEE Journal, vol. QE-21, pp. 315-321, 1985
[22] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Physical Review Letters, vol. 91, Jul 2003.
[23] H. A. Pohl, "SOME EFFECTS OF NONUNIFORM FIELDS ON DIELECTRICS," Journal of Applied Physics, vol. 29, pp. 1182-1188, 1958.
[24] H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields: Cambridge Univ. Press, 1978.
[25] M. P. Hughes, Nanoelectromechanics in Engineering and Biology CRC Press, 2002.
[26] M. Oxborrow, "Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators," Ieee Transactions on Microwave Theory and Techniques, vol. 55, pp. 1209-1218, Jun 2007.
[27] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 5 ed. vol. 1: Butterworth-Heinemann, 2000.