簡易檢索 / 詳目顯示

研究生: 林胤均
Lin, Yin-Chun
論文名稱: 豪斯多夫維度與阿波羅尼奧斯墊片的應用
Hausdorff Dimension and Application of Apollonian Circle Packing
指導教授: 陳國璋
Chen, Kuo-Chang
口試委員: 江金城
Jiang, Jin-Cheng
班榮超
Ban, Jung-Chao
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 16
中文關鍵詞: 豪斯多夫維度阿波羅尼奧斯墊片
外文關鍵詞: Hausdorff Dimension, Apollonian Circle Packing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們知道阿波羅尼奧斯墊片的豪斯多夫維度等於那些圓成長速率的指數次方,而在這篇論文中,我們將討論如果將邊界放寬至扇形甚至多邊形,是否仍然有著相同的圓成長速率並且數值上地計算出來。在文末,也會提到如何將阿波羅尼奧斯墊片應用至自然現象。


    This thesis introduces some previous work on Apollonian circle packing regarding computations of its Hausdorff dimension. The Hausdorff dimension is known to be the exponent of a power law on the growth rate of circles as their sizes decrease. We study the circle packing in more general sectors and polygons. We also numerically compute the exponent of the corresponding power law. At the end of this thesis, we will mention some real-world application of Apollonian circle packing, and other related problems.

    1.Introduction 2.Some previous results about Apollonian circle packing 3.Counting circles in an Apollonian packing 3-1.Descartes's formula 3-2.The circle inversion 4.Circle packing on a polygon 4-1.Circle packing on a sector 4-2.Conclusion 5.Random circle packing 5-1.Introduction of random circle packing 5-2.Real-world application of Apollonian circle packing 6.Future work 6-1.Duplicating infinite times of Apollonian circle packing 6-2.Circle packing on a curvilinear rectangle 7.Appendix

    1.D. W. Boyd,The residual set dimension of the Apollonian packing, Mathematika, v. 20, 1973, pp 170-174.

    2. D. W. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation, v. 39, 1982, pp. 249-254.

    3. Alex Kontorovich and Hee Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc, 2011, pp. 603-648.

    4.J.C. Lagarias, C.L. Mallows, A. Wilks, Beyond the descartes circle theorem, Amer. Math. Monthly, 109 (2002), pp. 338–361 eprint: arXiv math.MG/0101066.

    5. Gary W. Delaney, Stefan Hutzler, and Tomaso Aste, Relation between grain shape and fractal properties in random Apollonian packing with grain rotation, Phys. Rev. Lett. 101, 120602, 2008

    6. B. B. Mandelbrot, The Fractal Geometry of Nature,
    (Freeman, San Francisco, 1982).

    7. D. Mackenzie, A tisket, atasket, an Apollonian gasket, American Scientist, V. 98, 2010.

    8. M. Borkovec, W. De Paris, and R. Peikert, The fractal dimension of the apollonian sphere packing, Fractals 2.04 (1994): 521-526.

    9.P. Giulietti, C. Liverani and M. Pollicott,Anosov flow and dynamical zeta functions, arXiv preprint arXiv:1203.0904 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE