研究生: |
陳子靖 Chen, Tzu-Ching |
---|---|
論文名稱: |
四輪驅動自駕賽車之同步定位與地圖建置、導航控制及扭力引導系統研究 SLAM, Navigation and Torque Vectoring for a AWD Autonomous Racing Vehicle |
指導教授: |
葉廷仁
Yeh, Ting-Jen |
口試委員: |
洪建中
Hong, Chien-Chong 顏炳郎 Yen, Ping-Lang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 四輪獨立驅動 、自動駕駛 、模型預估控制 、隨機最佳化控制 、卡爾曼濾波器 、同步定位與地圖建置 、扭力引導系統 、圖形處理器 、平行運算 |
外文關鍵詞: | All-wheel Drive (AWD), Autonomous Driving System (ADS), Model Predictive Control (MPC), Stochastic Optimization, Kalman Filter, Simultaneous Localization and Mapping (SLAM), Torque Vectoring, GPU, Parallel Computing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究基於學生方程式無人賽車競賽,使用縮小比例實驗載具在角錐定義的賽道中實現環境感知、即時定位與地圖建構、路線建立、隨機模型預測最佳化控制。整台自駕車的運算架構可大致分為感測器融合與導航控制兩部分。感測器融合利用擴展式卡爾曼濾波器與FastSLAM-1.0演算法,融合相機與各項感測器資訊,以估測出車輛位置和角錐地圖等資訊。導航控制則是基於定位和路徑資料,應用圖形處理器平行運算多個車輛動力學模型,以模型預測控制-隨機最佳化方式求解車輛之控制,並引入扭力引導系統(Torque Vectoring)以輔助車輛達成更高的偏航角速度,以減緩轉向不足,使車輛過彎更加靈活。
Based on Formula Student Driverless (FSD) competition, this research uses a scale-down prototype vehicle to achieve environment perception, simultaneous localization and mapping (SLAM), road building, and stochastic model predictive control (MPC) in the track defined by the cones. The computing structure of the autonomous vehicle can be divided into two parts: sensor fusion and navigation control. Sensor fusion applies extended Kalman filter (EKF) and FastSLAM-1.0 algorithms to estimate vehicle position and coned map using measurements from two cameras and various sensors. Navigation control is based on localization results and map information, and it relies on the graphics processing unit (GPU) to calculate multiple vehicle trajectories in parallel for solving the vehicle control problem by stochastic MPC. The navigation control also introduces torque vectoring to further enhance the vehicle performance. The understeer phenomenon is alleviated and a higher yaw rate is achieved, which makes the vehicle more agile in cornering.
[1] SAE International. "SAE Levels of Driving Autonation"
https://www.sae.org/blog/sae-j3016-update (accessed 2021).
[2] FSG. "FSG Competition Handbook 2021, v1.2" https://www.formulastudent.de/fileadmin/user_upload/all/2021/rules/FSG21_Competition_Handbook_v1.2.pdf.
[3] T. Kanade, C. Thorpe, and W. Whittaker, "Autonomous land vehicle project at CMU," presented at the Proceedings of the 1986 ACM fourteenth annual conference on Computer science, Cincinnati, Ohio, USA, 1986. [Online]. Available: https://doi.org/10.1145/324634.325197.
[4] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, "Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 41-54, 2020, doi: 10.1109/TVT.2019.2949603.
[5] P. Pydipogu, M. Fahim, and M. Shafique, "Robust lane detection and object tracking In relation to the intelligence transport system," 2013.
[6] Formula Student Germany "Rules & Important Documents." https://www.formulastudent.de/fsg/rules/ (accessed 2021).
[7] FSG. "Formula Student Rules 2022." https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf (accessed 2021).
[8] FSG. "Galleries" https://media.formulastudent.de/2021/Hockenheim
[9] G. Tanzmeister, M. Friedl, A. Lawitzky, D. Wollherr, and M. Buss, "Road course estimation in unknown, structured environments," in 2013 IEEE Intelligent Vehicles Symposium (IV), 23-26 June 2013 2013, pp. 630-635, doi: 10.1109/IVS.2013.6629537.
[10] G. Tanzmeister, M. Friedl, D. Wollherr, and M. Buss, "Path planning on grid maps with unknown goal poses," in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 6-9 Oct. 2013 2013, pp. 430-435, doi: 10.1109/ITSC.2013.6728269.
[11] G. Tanzmeister, D. Wollherr, and M. Buss, "Environment-based Trajectory Clustering To Extract Principal Directions For Autonomous Vehicles," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14-18 Sept. 2014 2014, pp. 667-673, doi: 10.1109/IROS.2014.6942630.
[12] G. Tanzmeister, D. Wollherr, and M. Buss, "Grid-Based Multi-Road-Course Estimation Using Motion Planning," IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 1924-1935, 2016, doi: 10.1109/TVT.2015.2420752.
[13] K. Brandes, A. Wang, and R. Shah, "Robust Lane Detection with Binary Integer Optimization," in 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May-31 Aug. 2020 2020, pp. 229-235, doi: 10.1109/ICRA40945.2020.9197098.
[14] S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. I. Valls, and R. Siegwart, "End-to-End Velocity Estimation for Autonomous Racing," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6869-6875, 2020, doi: 10.1109/LRA.2020.3016929.
[15] M. Bojarski et al., "End to end learning for self-driving cars. arXiv 2016," arXiv preprint arXiv:1604.07316, 2016.
[16] L. Curiel-Ramirez et al., "End-to-End Automated Guided Modular Vehicle," Applied Sciences, vol. 10, p. 4400, 06/26 2020, doi: 10.3390/app10124400.
[17] J. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros, Optimization-Based Hierarchical Motion Planning for Autonomous Racing. 2020.
[18] J. Kabzan et al., AMZ Driverless: The Full Autonomous Racing System. 2019.
[19] R. C. Coulter, "Implementation of the pure pursuit path tracking algorithm," Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.
[20] J. Y. Goh, T. Goel, and J. Christian Gerdes, "Toward Automated Vehicle Control Beyond the Stability Limits: Drifting Along a General Path," Journal of Dynamic Systems, Measurement, and Control, vol. 142, no. 2, 2019, doi: 10.1115/1.4045320.
[21] G. Tech. "AutoRally." https://autorally.github.io/ (accessed 2021).
[22] 謝昇翰, "四輪獨立驅動自駕賽車之設計與實作:機電整合、定位及導航控制", 2020
[23] H. Pacejka, I. J. M. Besselink, and I. Besselink, Tire and Vehicle Dynamics. Elsevier Science, 2012.
[24] S. H. Żak and S. H. Żak, Systems and Control. Oxford University Press, 2003.
[25] IEEE, "IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros," IEEE Std 647-2006 (Revision of IEEE Std 647-1995), pp. 0_1-83, 2006, doi: 10.1109/IEEESTD.2006.246241.
[26] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME--Journal of Basic Engineering, vol. 82, Series D, pp. 35-45, 1960.
[27] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, 2006, doi: 10.1109/MRA.2006.1638022.
[28] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "Fastslam: a factored solution to simultaneous mapping and localization," in Proceedings of the National Conference on Artificial Intelligence (AAAI), 2003.
[29] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges," Proc. IJCAI Int. Joint Conf. Artif. Intell., 06/25 2003.
[30] D. Lee and B. Schachter, "Two Algorithms for Constructing a Delaunay Triangulation," International Journal of Parallel Programming, vol. 9, pp. 219-242, 06/01 1980, doi: 10.1007/BF00977785.
[31] J. E. Bresenham, "Algorithm for computer control of a digital plotter," IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965, doi: 10.1147/sj.41.0025.
[32] N. Irie and J. Kuroki, "4WS Technology and the Prospects for Improvement of Vehicle Dynamics," in Vehicle Electronics in the 90's: Proceedings of the International Congress on Transportation Electronics, Oct. 1990 1990, pp. 429-437, doi: 10.1109/ICTE.1990.713040.
[33] M. J. P. Groenendijk, "Improving Vehicle Handling Behaviour with Active Toe-control," Master, Department Mechanical Engineering Dynamics and Control Group, Eindhoven University of Technology, 2009.
[34] D. L. Milliken, Race Car Vehicle Dynamics: Problems, Answers, and Experiments. SAE International, 2003.
[35] S.-H. Lee, Y. Son, C. M. Kang, and C. C. Chung, "Slip Angle Estimation: Development and Experimental Evaluation," IFAC Proceedings Volumes, vol. 46, no. 10, pp. 286-291, 2013/06/01/ 2013, doi: https://doi.org/10.3182/20130626-3-AU-2035.00071.
[36] A. Bochkovskiy, C.-Y. Wang, and H.-y. Liao, YOLOv4: Optimal Speed and Accuracy of Object Detection. 2020.
[37] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, "Information-Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving," IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603-1622, 2018, doi: 10.1109/TRO.2018.2865891.
[38] E. Theodorou, J. Buchli, and S. Schaal, "A Generalized Path Integral Control Approach to Reinforcement Learning," Journal of Machine Learning Research, vol. 11, pp. 3137-3181, 11/01 2010.
[39] E. Theodorou, F. Stulp, J. Buchli, and S. Schaal, "An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11594-11601, 2011/01/01/ 2011, doi: https://doi.org/10.3182/20110828-6-IT-1002.02249.
[40] E. A. Theodorou, "Iterative path integral stochastic optimal control: Theory and applications to motor control," 2011.
[41] G. Williams, A. Aldrich, and E. A. Theodorou, "Model Predictive Path Integral Control: From Theory to Parallel Computation," Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344-357, 2017, doi: 10.2514/1.G001921.
[42] S. Koehler, A. Viehl, O. Bringmann, and W. Rosenstiel, "Energy-Efficiency Optimization of Torque Vectoring Control for Battery Electric Vehicles," IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 3, pp. 59-74, 2017, doi: 10.1109/MITS.2017.2709799
[43] E. Mikuláš, M. Gulan and G. Takács, "Model Predictive Torque Vectoring Control for a Formula Student Electric Racing Car," 2018 European Control Conference (ECC), 2018, pp. 581-588, doi: 10.23919/ECC.2018.8550124.
[44] G. Vasiljevic and S. Bogdan, “Model predictive control based torque vectoring algorithm for electric car with independent drives,” in 24th Mediterrian Conference Control and Automation, 2016, pp. 316–321.
[45] G. Kaiser, F. Holzmann, B. Chretien, M. Korte, and H. Werner, "Torque vectoring with a feedback and feed forward controller - applied through the road hybrid electric vehicle," in Proc. IEEE Intelligent Vehicles Symp., 2011, pp. 448-453.
[46] P. He and Y. Hori, "Optimum traction force distribution for stability improvement of 4wd ev in critical driving condition," in Proc. 9th IEEE Int. Workshop Advanced Motion Control, 2006, pp.596-601.
[47] ABE, Masato. Vehicle handling dynamics: theory and application. Butterworth-Heinemann, 2015.