研究生: |
鄭旭翔 Cheng, Hsu-Hsiang |
---|---|
論文名稱: |
藉由彈簧、振膜與電極設計提升壓電式微機電揚聲器之表現 Design of Spring, Diaphragm, and Electrode for the Performance Enhancement of Piezoelectric MEMS Microspeaker |
指導教授: |
方維倫
Fang, Wei-leun |
口試委員: |
李昇憲
Li, Sheng-Shian 吳明清 Wu, Mingching |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 微機電揚聲器 、壓電 、彈簧 、振膜 、電極 、高聲壓等級 、大操作頻率範圍 |
外文關鍵詞: | MEMS microspeaker, piezoelectric, spring, diaphragm, electrode, high sound pressure level, broad frequency range |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電揚聲器目前普遍受限於微縮的元件尺寸,面臨輸出聲壓不足以及操作範圍受限的問題。本研究以高聲壓等級與大操作頻率範圍為兩大目標,透過SOI製程設計並實現壓電式微機電揚聲器,藉由高壓電係數的PZT壓電薄膜,搭配彈簧、振膜與電極的設計,提升振膜的出平面位移、激發特定的共振模態,達到更高的聲壓等級以及更大的操作頻率範圍。通以2 Vpp的驅動電壓,在標準的人工耳系統內量測,雙彎曲式彈簧設計展現了很好的低頻表現,相較於傳統的封閉式振膜,在1 kHz處的聲壓等級提升了18.1 dB;單彎曲式彈簧搭配中央驅動電極的設計則是將聲壓等級60 dB以上的頻率範圍延伸至15.0 kHz,頻率範圍比單純的單彎曲式彈簧結構增加了4倍以上;單彎曲式彈簧搭配肋補強振膜的設計則是將聲壓等級60 dB以上的頻率範圍延伸至6.78 kHz,同時擁有極佳的低頻表現,1 kHz處的聲壓等級高達84.0 dB。此外,本研究之振膜面積相較於已發表之壓電式微機電揚聲器微縮了9倍以上,但仍保有極具競爭力的聲壓等級。
Limited by the miniaturized chip size, current MEMS microspeakers suffer insufficient sound pressure level and frequency range. This study aims to design and realize piezoelectric MEMS microspeakers with high sound pressure level and broad frequency range by means of the SOI processes. On the basis of high piezoelectric coefficient PZT thin film, the designs of spring, diaphragm, and electrode enhance out-of-plane displacement of diaphragm and actuate specific resonant modes to get higher sound pressure level and broader frequency range. Measured in the standard ear simulator systems with 2 Vpp driving voltage, the results show that: the dual-curve spring design has good performance at low frequencies, and the sound pressure level is 18.1 dB higher than the clamped type; the design of single-curve spring with central driving unit extends the frequency range higher than 60 dB to 15.0 kHz, and the range increases more than 4 times compared with the single-curve spring design; the design of single-curve spring with rib-reinforced diaphragm extends the frequency range higher than 60 dB to 6.78 kHz, and has nice low-frequency performance with 84.0 dB at 1 kHz. Moreover, compared with the published literature of piezoelectric MEMS microspeaker, the diaphragm area of this study is more than 9 times smaller while the devices still show a reasonable sound pressure level.
[1] http://www.yole.fr
[2] http://www.audiopixels.com.au
[3] http://www.usound.com
[4] https://www.st.com
[5] J.J. Neumann Jr., and K.J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sensors and Actuators A: Physical, vol. 95, pp. 175-182, 2002.
[6] H. Kim, A.A. Astle, K. Najafi, L.P. Bernal, P.D. Washabaugh, and F. Cheng, “Bi-directional electorstatic microspeaker with two large-deflection flexible membranes actuated by single/dual electrodes,” IEEE SENSORS, Irvine, CA, USA, Oct., 2005, pp. 89-92.
[7] G. De Pasquale, L. Rufer, S. Basrour, and A. Somà, “Modeling and validation of acoustic performances of micro-acoustic sources for hearing applications,” Sensors and Actuators A: Physical, vol. 274, pp. 614-628, 2016.
[8] M.-C. Cheng, W.-S. Huang, and S. R.-S. Huang, “A silicon microspeakers for hearing instruments,” Journal of Micromechanics and Microengineering, vol. 14, pp. 859-866, 2004.
[9] S.-S. Je, and J. Chae, “A compact, low-power, and electromagnetically acutated microspeaker for hearing aids,” IEEE Electron Device Letters, vol. 29, pp. 856-858, 2008.
[10] S.-S. Je, F. Rivas, R. E. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, S. Kiaei, and J. Chae, “A compact and low-cost MEMS loudspeaker for digital hearing aids,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, pp. 348-358, 2009
[11] Y.-C. Cheng, and Y.-T. Cheng, “A low-power milliwatt electromagnetic microspeaker using a PDMS membrane for hearing aids application,” IEEE MEMS, Cancun, Mexico, Jan., 2011, pp. 1213-1216.
[12] I. Shahosseini, E. Lefeurve, E. Martincic, M. Woytasik, J. Moulin, S. Megherbi, R. Ravaud, and G. Lemarquand, “Microstructured silicon membrane with soft suspension beams for a high performance MEMS microspeaker,” Microsystem Technologies, vol. 18, pp. 1791-1799, 2012.
[13] I. Shahosseini, E. Lefeurve, J. Moulin, E. Martincic, M. Woytasik, and G. Lemarquand, “Optimization and microfabrication of high performance silicon-based MEMS microspeaker,” IEEE Sensors Journal, vol. 13, pp. 273-284, 2013.
[14] S.C. Ko, Y.C. Kim, S.S. Lee, S.H. Choi, and S.R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A: Physical, vol. 103, pp. 130-134, 2003.
[15] C.-C. Lee, Q. Guo, G.Z. Cao, and I.Y. Shen, “Effect of electorde size and silicon residual on piezoelectric thin-film membrane actuators,” Sensors and Actuators A: Physical, vol. 147, pp. 279-285, 2008.
[16] C. Luo, G.Z. Cao, and I.Y. Shen, “Enhancing displacement of lead-zirconate-titanate (PZT) thin-film membrane microactuators via a dual electrode design,” Sensors and Actuators A: Physical, vol. 173, pp. 190-196, 2012.
[17] C. Luo, G.Z. Cao, and I.Y.Shen, “Development of lead-zirconate-titanate (PZT) thin-film microactuator probe for intracochlear applications,” Sensors and Actuators A: Physical, vol. 201, pp. 1-9, 2013.
[18] F. Casset, R. Dejaeger, B. Laroche, B. Desloges, Q. Leclere, R. Morisson, Y. Bohard, JP. Goglio, J. Escato, and S. Fanget, “A 256 MEMS membrane digital loudspeaker array based on PZT actuators,” Procedia Engineering, vol. 120, pp. 49-52, 2015.
[19] S.H. Yi, and E.S. Kim, “Micromachined piezoelectric microspeaker,” Japanese Journal of Applied Physics, vol. 44, pp. 3836-3841, 2005.
[20] S.H. Yi, S.C. Ur, and E.S. Kim, “Performance of packaged piezoelectric microspeakers depending on the material properties,” IEEE MEMS, Sorrento, Italy, Jan., 2009, pp. 765-768.
[21] I.-J. Cho, S. Jang, and H.-J. Nam, “A piezoelectrically actuated MEMS speaker with polyimide membrane and thin film Pb(Zr,Ti)O3(PZT) actuator,” Integrated Ferroelectrics, vol. 105, pp. 27-36, 2009.
[22] R.J. Przybyla, S.E. Shelton, A. Guedes, I.I. Izyumin, M.H. Kline, D.A. Horsley, and B.E. Boser, “In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer,” IEEE Sensors Journal, vol. 11, pp. 2690-2697, 2011.
[23] S.S. Lee, R.P. Ried, and R.M. White, “Piezoelectric cantilever microphone and microspeaker,” Journal of Microelectromechanical Systems, vol. 5, pp. 238-242, 1996.
[24] S.S. Lee, and R.M. White, “Piezoelectric cantilever acoustic transducer,” Journal of Micromechanics and Microengineering, vol. 8, pp. 230-238, 1998.
[25] S.-J. Chen, Y. Choe, L. Baumgartel, A. Lin, and E.S. Kim, “Edge-released piezoelectric MEMS acoustic transducers in array configuration,” Journal of Micromechanics and Microengineering, vol. 22, 025005, 2012.
[26] Y. Liu, C. Luo, G.Z. Cao, and I.Y. Shen, “Feasibility study of a partially released lead-zirconate-titanate (PZT) diaphragm microe-actuator,” Sensors and Actuators A: Physical, vol. 259, pp. 1-13, 2017.
[27] F. Stoppel, C. Eisermann, S. Gu-Stoppel, D. Kaden, T. Giese and B. Wagner, “Novel membrane-less two-way MEMS loudspeaker based on piezoelectric dual-concentric actuators,” Transducers, Kaohsiung, Taiwan, Jun., 2017, pp. 2047-2050.
[28] F. Stoppel, A. Männchen, F. Niekiel, D. Beer, T. Giese and B. Wagner, “New integrated full-range MEMS speaker for in-ear applications,” IEEE MEMS, Belfast, Northern Ireland, UK, Jan., 2018, pp. 1068-1071.
[29] 白明憲(民97),工程聲學(第四版),臺北縣:全華。
[30] G.D. Shilpa, K. Sreelakshmi, and M.G. Ananthaprasad, “PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: a review,” Materials Science and Enigineering, vol. 149, 012190, 2016.
[31] I. Kanno, “Piezoelectric MEMS: Ferroelectric thin film for MEMS applications,” Japanese Journal of Applied Physics, vol. 57, 040101, 2018.
[32] S.-T. Ho, “Modeling and analysis on ring-type piezoelectric transformers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, pp. 2376-2384, 2007.
[33] T.D. Rossing, Springer Handbook of Acoustics, 1st Ed., New York, NY: Spring-Verlag, 2007.
[34] R.J. Littrell, “High performance piezoelectric MEMS microphones,” Dissertation, The University of Michigan, 2010, https://deepblue.lib.umich.edu.
[35] J.-L. Huang, S.-C. Lo, J.-J. Wang, C.-E. Lu, S.-H. Tseng, M. Wu, and W. Fang, “High sensitivity and high S/N microphone achieved by PZT film with central-circle electrode design,” IEEE MEMS, Las Vegas, NV, USA, Jan., 2017, pp. 1188-1191.
[36] Q.-M. Wang, Q. Zhang, B. Xu, R. Liu, and L. E. Cross, “Nonlinear piezoelectric behavior of ceramic bending mode actuators under srtong electric fields,” Journal of Applied Physics, vol. 86, pp. 3352-3360, 1999.
[37] M. Karjalainen, “Kommunikaatioakustiikka,” Helsinki University of Technology, Thecnical Report 51, 1999.
[38] COMSOL, https://www.comsol.com.
[39] Y. Lu, and D.A. Horsely, “Modeling, fabrication, characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers,” Journal of Microelectromechanical Systems, vol. 24, pp. 1142-1149, 2015.
[40] ANSYS, http://www.ansys.com.
[41] 黃子榮,「提升PZT壓電麥克風SNR值之結構與電極設計」,國立清華大學碩士論文,2018。
[42] X. Chen, A.I. Kingon, and O. Auciello, “AC conductivity and dielectric propoerties of sol-gel PZT thin films for ferroelectric memort applications,” IEEE ISAF, Greenville, SC, USA, Aug., 1992, pp. 229-232.
[43] Q. Zuo, H.E. Ruda, B.G. Yocabi, K. Saegusa, and M. Farrell, “Dielectric properties of lead zirconate titanate thin films deposited on metal foils,” Appl. Phys. Lett., vol. 77, 1038, 2000.
[44] L. Che, J. Cheng, S. Yu, C. Chen, and Z. Meng, “Electrical properties of lead zirconate titanate thin films by a hyfrothermal method,” IEEE ISAF, Sunset Beach, NC, USA, Jul., 2006, pp. 1-4.
[45] R. Balusamy, P. Kumaravel, and N.G. Renganathan, “Dielectric and electrical properties of lead zirconate titanate,” Der Pharma Chemica, vol. 7, pp. 175-185, 2015.
[46] J.M. Dekkers, H. Boschker, Z. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31, eff determined from cantilever structures,” Journal of Micromechanics and Microengineering, vol. 23, 025008, 2013.
[47] Y. Tsujiura, S. Kawabe, F. Kurokawa, H. Hida, and I. Kanno, “Comparison of effective transverse piezoelectric coefficient e31, f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects,” Japanese Journal of Applied Physics, vol. 54, 10NA04, 2015.
[48] X.J. Lou, and J. Wang, “Bipolar and unipolar electrical fatigue in ferroelectric lead zirconate titanate thin films: an experimental comparison study,” Journal of Applied Physics, vol. 108, 034104, 2010.
[49] H. Weitzing, G.A. Schneider, J. Steffens, M. Hammer, and M.J. Hoffmann, “Cyclic fatigue due to electric loading in ferroelectric ceramics,” Journal of the European Ceramic Society, vol. 19, pp. 1333-1337, 1999.
[50] J. Glaum, and M. Hoffman, “Electric fatigue of lead-free piezoelectric materials,” Journal of the American Ceramic Society, vol. 97, pp. 665-680, 2014.
[51] G.R.A.S Sound & Vibration A/S, https://www.gras.dk/.
[52] T. Wang, T. Kobayashi, and Chengkuo Lee, “Braodband piezoelectric micromachined ultrasonic transducer (pMUT) using mode-merged design,” IEEE NEMS, Xi’an, China, Apr., 2015, pp. 238-242.