簡易檢索 / 詳目顯示

研究生: 李勝偉
Sheng-Wei Lee
論文名稱: 超高真空化學氣相沉積法成長矽鍺虛擬基材暨奈米結構之應用研究
Growth of SiGe Virtual Substrates and Nanostructures by Ultra-High Vacuum Chemical Vapor Deposition
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 202
中文關鍵詞: 矽鍺超高真空化學氣相沉積法形變矽量子點
外文關鍵詞: SiGe, UHVCVD, strained Si, quantum dot
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增進元件的運作速度及降低製程成本,半導體元件尺寸發展趨向於微小化,但隨著半導體製程技術跨入到65或45奈米世代,元件尺寸微縮便面臨到了物理極限的瓶頸。因此在矽製程技術中導入新的材料便成了持續增進元件效能的重要方式,例如:內連線的高導電率、低介電材料,閘極的高介電材料以及取代矽基材的絕緣層上矽晶(SOI)。矽鍺(SiGe)被認為是最有機會取代矽,成為半導體下一個世代的替代材料。本研究利用超高真空化學氣相沉積法(UHVCVD)以各種方式成長高品質的矽鍺虛擬基材及新穎的矽鍺奈米結構。
    本研究分別提出以[矽鍺/矽碳(或矽)/矽鍺]堆疊結構及多重鍺量子點(quantum dot)作為緩衝層(buffer layer)來成長高品質的應變釋放矽鍺虛擬基材。實驗結果證實矽鍺磊晶層的穿越差排(threading dislocation)密度及殘留應變(residual strain)可以有效地降低。本文針對這些成長方式提出了相異於傳統成分漸變緩衝層(compositionally graded buffer layer)應變釋放的機制探討。另外,利用這些矽鍺虛擬基材技術所製作的形變矽n型金氧半場效電晶體(strained-Si n-MOSFET)擁有良好的元件操作特性,有效電子遷移率(effective electron mobility)較傳統無應變矽基元件大幅地提升80~95%,顯示矽鍺虛擬基材在未來形變矽元件的製造上是不可或缺的技術之一。
    由於矽鍺在未來光電元件上的潛在應用,自組裝(self-assembled)鍺量子點在近年來已引起廣泛的興趣與研究。本研究提出以矽披覆鍺量子點的方式來成長自組裝矽鍺奈米環(nano-ring)。在矽披覆的過程中,鍺量子點由多面體半球型轉變為四面體金字塔型,最後形成矽鍺奈米環。由拉曼光譜推測出奈米環的形成機制是由應變釋放所造成;因此,利用不同成份的矽鍺披覆鍺量子點,奈米環形成的尺寸可以進而獲得控制。另外,由於具有較高的量子點密度及較高角度的晶面,矽披覆金字塔型的量子點因而擁有最優良的場發射特性。
    本研究提出使用SiCH6處理矽基材表面以改變鍺量子點在超高真空化學氣相沉積法低溫下的成長行為。藉由精確的SiCH6表面處理,鍺量子點可以由原本不均勻的長條型轉變為高均勻性的多面體半球型;其成長模式轉變的機制為: (1)幾乎被氫鍵所保護的表面限制了鍺量子點的成核位置,(2)在表面被碳鍵所排斥的鍺原子加入已形成的鍺量子點。實驗結果證明:相較於長條型鍺量子點,經SiCH6表面處理所成長的半球型鍺量子點具有較優良的電子場發射特性。
    在成長多重鍺量子點過程中,使用預混合(pre-intermixing)的成長方式可以有效地改善鍺量子點的均勻度並避免圓錐形缺陷(cone-shaped defect)的產生。此外,隨著量子點層數增加而造成量子點密度快速下降的情況也同時獲得改善。由於擁有較強的激發光譜特性,使用預混合方式成長多重鍺量子點是未來在製作矽基光電元件上相當重要的一項技術。
    本研究亦以即時穿透式電子顯微鏡(in-situ TEM)觀察鍺量子點在矽基材(113)晶面上成長及高溫下退火的行為。大部分的自組裝鍺量子點形成於矽表面的階梯(step)處。藉由Moire條紋的分析得知,鍺量子點在高溫退火時便持續遭遇到嚴重的矽鍺相互擴散;而在最後的階段,由於含有大量的矽,鍺量子點以自分解的方式消失。


    The Si-based metal-oxide-silicon field-effect-transistor (MOSFET) is currently the device of choice for state-of-the-art digital electronics. Historically, the performance improvements of MOSFETs have been attained by shrinking device dimensions such as gate length and gate oxide thickness. However, the practical benefit of scaling is declining as physical limits are approached. Therefore, the incorporation of new materials, from the interconnect level (low-k), to the gate stack (high-k), and even the substrate [silicon-on-insulator (SOI)] is emerging as an important way to continue to improve circuit performance. Si1-xGex/Si heterostructures have been under extensive study because they can provide adjustable bandgaps and improved carrier mobilities compared with Si homostructures. In this dissertation, the growth of high-quality SiGe virtual substrates and novel SiGe nanostructures by ultra-high vacuum chemical vapor deposition (UHV/CVD) was demonstrated.
    An intermediate Si or Si1-yCy layer in the Si1-xGex film, replacing the conventionally graded buffer layer, was used to form the high-quality relaxed SiGe substrates. The results indicate that the Si (Si1-yCy) layer serves as preferential nucleation sites for misfit dislocation array to relax the mismatch strain during the SiGe overgrowth. Threading dislocation density and the residual strain remained in those SiGe uniform epilayers were found to be reduced effectively. The shallow pits on the surface related to strain relief were also found to be suppressed. The 800-nm-thick Si1-xGex/Si1-yCy/Si1-xGex (x=0.2, y=0.014) heterostructure was demonstrated to have a threading dislocation density of 5.4□105 cm-2 with a residual strain of only 2 %. Effective electron mobility for the strained-Si device with this novel substrate technology was found to be 95% higher than that of Si control device [Chapter 5 and 6].
    High-quality SiGe films with a buffer layer containing Ge quantum dots have also been grown by UHV/CVD. Threading dislocation density and the residual strain remained in the SiGe uniform epilayers were found to reduce drastically with the increasing period of Ge dots/Si bilayers up to 10 periods. The Si0.8Ge0.2 film grown on a 10-period Ge dots/Si bilayers was demonstrated to have a threading dislocation density of 2.0□105 cm-2 with a residual strain of only 11%. The resulting SiGe films with multiple Ge quantum dots layers also exhibit distinct characteristics compared with the modified Frank-Reed (MFR) mechanism observed in compositionally graded layers structures. Effective electron mobility for the strained-Si device with the multiple Ge quantum dots buffer layer was found to be 90% higher than that of Si control device. These experimental results demonstrate the great promise of strained-Si devices and suggest a path for future investigations [Chapter 7].
    Epitaxial deposition of Ge/Si(001) heterostructures can be regarded as a well understood model system for self-assembly techniques. Nano-rings with an average height and diameter of 1.2 and 65 nm, respectively, were observed to from in Si-capped Ge quantum dots grown at 600 ℃ by UHV/CVD. The nano-rings were captured with the rapid cooling of the samples with appropriate amount of Si capping. Based on the results of transmission electron microscopy and Raman spectroscopy, the formation of nano-rings is attributed to alloying and strain relief in the Si/Ge/(001)Si system. The self-assembly of nano-rings provides a useful scheme to form ultrasmall ring-like structure and facilitates the characterization of the physical properties of unconventional quantum structures. In addition, field emission characteristics of self-assembled Si-capped Ge quantum dots with different Si coverages have also been investigated. With an appropriate amount of Si capping to form the truncated pyramids, the field-emission behaviors of Si-capped Ge quantum dots were found to be improved significantly. Based on transmission electron microscope examinations, this improvement can be attributed to the sharper apex and a higher density of the truncated pyramids as compared to the uncapped domes. However, further Si capping could degrade the field emission properties owing to the flattening of Ge islands features [Chapter 8].
    The SiCH6-mediations were used to modify the Stranski-Krastanow (S-K) growth mode of Ge dots on Si(001) at 550 ℃ by UHV/CVD. With the appropriate SiCH6-mediation, the elongated Ge hut clusters can be transformed to highly uniform multi-faceted domes with a high Ge composition at the core. The modified growth mode for the formation of SiCH6-mediated Ge dots can be attributed to (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. These SiCH6-mediated dots were found to exhibit the improved field emission characteristics compared to shallow Ge huts. These experimental results demonstrate a useful scheme to utilize self-assembled Ge QDs as field-emitter arrays [Chapter 9].
    The pre-intermixing treatments of Ge quantum dots were demonstrated to be effective in improving the size uniformity and preventing the formation of cone-shaped defects (CSDs) in the Ge-dot multilayers. The rapid decrease in density of Ge dots with the number of layers is also alleviated. The strain relaxation of Si/Ge multifold layers is characterized by high-resolution rocking curves. The pre-intermixed Ge dots have stronger photoluminescence (PL) intensity due to a higher Ge dots density and a lower cone-shaped defect density. The results indicate that pre-intermixing treatment of Ge quantum dots is a promising technique for the fabrication of emitters and detectors in Si-based optoelectronic devices [Chapter 10].
    The growth and evolution of the Ge islands on Si(113) during the high-temperature annealing have been investigated by in-situ TEM examinations. Most of Ge islands on Si(113) were found to form at the edges of surface terraces. The analysis of Moiré pattern reveals that the Ge islands undergo the serious Si-Ge intermixing during the annealing. In addition, the decomposition of the severely intermixed Ge islands with further annealing was first observed [Chapter 11].

    Contents Acknowledgments …………………………………………………. VII Abstract ………………………………………………………………. IX List of Abbreviations and Acronyms ……………………………. XVI Chapter 1 SiGe Heterostructures 1.1 An Overview ………………………………………………………. 1 1.2 Material Properties of Si1-xGex ...…………………………………... 3 1.2.1 Lattice Parameters and Lattice Mismatch.....……………....... 3 1.2.2 Critical Thickness of Si1-xGex on Si ...…….…………………. 4 1.3 Electronic Properties of Strained Si1-xGex …...…………………..... 6 1.4 Si1-xGex Epitaxial Growth Techniques .............................................. 7 1.4.1 Ultra-high Vacuum Chemical Vapor Deposition …….………. 8 1.4.2 Molecular Beam Epitaxy …………………………………….. 9 1.5 Material and Processing Complexities ........................................... 10 Chapter 2 SiGe Virtual Substrates 2.1 Introduction to SiGe Virtual Substrates .......................................... 12 2.2 Dislocation and Threading Arms ………………………………… 12 2.3 Fabrication of High-Quality SiGe Virtual Substrates ….………… 14 2.4.1 Relaxed Graded Buffer Technology ……………………...… 14 2.4.2 Compliant Substrates ……………………………………...... 15 2.4.3 Low Temperature Si Buffer Layer ……………………….… 16 2.4.4 Hydrogen Ion Implantation ………………..……………….. 17 2.4 Strained Si on SiGe Virtual Substrates ………………………..…. 18 2.4.1 Effect of the Strain on the Band Structures ………..……….. 18 2.4.2 Type-II Band Alignment …………………………………..... 19 2.4.3 Strained-Si N-Channel MOSFETs …………………………. 20 Chapter 3 Ge Quantum Dots 3.1 Introduction to Ge Quantum Dots …………………………….…. 21 3.2 Formation of Self-Assembled Ge Dots ……………………...…… 22 3.2.1 Stranski-Krastanow Growth Mode of Ge Dots …………….. 22 3.2.2 Shape Transitions of Ge Dots ………………………………. 23 3.2.3 Bimodal Size Distribution …………………………….……. 24 3.3 Self-Ordered Ge Dot Structures ……………………………..…… 25 3.3.1 Vertically Self-Aligned Si/Ge Dot Stacks ………………….. 26 3.3.2 Laterally Self-Ordered Arrays of Ge Dots …………………. 27 3.4 Interband Properties …………………………………………........ 28 3.5 Applications of Self-Assembled Ge Dots ……..…………………. 29 3.5.1 Room-Temperature Light-Emitting Diodes ………………... 29 3.5.2 Dot-Based Field-Effect Transistors ………………………… 30 3.5.3 Field Emitter Arrays ………………………………………... 31 Chapter 4 Experimental Procedures 4.1 Ultra-high Vacuum Chemical Vapor Deposition ……….…….….. 33 4.2 High resolution XRD (HRXRD) Analysis …………………….… 34 4.3 Transmission Electron Microscope Observation …..…….............. 35 4.4 Energy Dispersion Spectrometer (EDS) Analysis ……………….. 35 4.5 Atomic Force Microscope (AFM) Observation ……..…………… 36 4.6 Etch Pit Density (EPD) Measurements ………………..….……… 36 4.7 Raman Spectrometer Analysis ……………..………...................... 36 4.8 Field Emission Measurements ………………………………..….. 37 4.9 Photoluminescence Spectroscopy …………..……………………. 37 4.10 Fabrication of Strained-Si n-MOSFETs …………………...……. 38 4.11 Carrier Mobility Extraction ……………………...……………… 39 Chapter 5 The Growth of High-Quality Relaxed Si1-xGex Films with an Intermediate Si Layer 5.1 Motivation ………………………………………..………………. 41 5.2 Sample Preparation ……………………………..………………... 42 5.3 Results and Discussion ………………………..…………………. 43 5.4 Summary and Conclusions ……………..……..…………………. 46 Chapter 6 The Growth of Strained Si on High-Quality Relaxed Si1-xGex with an Intermediate Si1-yCy Layer 6.1 Motivation ………………………………………….…………….. 47 6.2 Sample Preparation ………………………………………….…… 48 6.3 Results and Discussion ……………………………………...…… 49 6.4 Summary and Conclusions ……………..……..…………………. 53 Chapter 7 The Growth of High-Quality SiGe Films with a Buffer Layer Containing Ge Quantum Dots 7.1 Motivation ………………………………………………….…….. 55 7.2 Sample Preparation ………………………………………………. 56 7.3 Results and Discussion ……………………………………...…… 57 7.4 Summary and Conclusions ……………..……..…………………. 61 Chapter 8 Self-Assembled Nano-Rings in Si-Capped Ge Quantum Dots on (001) Si 8.1 Motivation …………………………….………………………….. 62 8.2 Sample Preparation ……………………………………….……… 63 8.3 Results and Discussion …………………………...……………… 64 8.3.1 Shape Transitions of Ge QDs during Si Overgrowth ………. 64 8.3.2 Microstructures of Si-capped Ge QDs …………………...… 65 8.3.3 Formation Mechanism of Nano-Rings …………………...… 67 8.3.4 Field Emission Properties of Si-capped Ge QDs …………... 68 8.4 Summary and Conclusions ……………..……..…………………. 70 Chapter 9 Self-Assembled Ge Quantum Dots with Improved Field Emission on Si (001) by Methylsilane Mediation 9.1 Motivation ……………………………………………...………… 71 9.2 Sample Preparation ………………………………...…………….. 72 9.3 Results and Discussion …………………..………………………. 73 9.4 Summary and Conclusions ……………..…….…………………. 76 Chapter 10 Improved Growth of Ge Quantum Dots in Ge/Si Stacked Layers by Pre-Intermixing Treatments 10.1 Motivation ……………………………………….……………… 78 10.2 Sample Preparation …………………………………...………… 79 10.3 Results and Discussion ……………………………….………… 80 10.4 Summary and Conclusions …………..…….….………………. 81 Chapter 11 In-situ Observation of Evolution of Self-Assembled Ge/Si(113) Islands during Annealing 11.1 Motivation …………………………………………….………… 83 11.2 Sample Preparation …………………………………...………… 84 11.3 Results and Discussion ……………………………….………… 85 11.3.1 Ge Islands on Si(113) ………………………….………… 85 11.3.2 In-situ Annealing of Ge Islands ……………….………… 86 11.4 Summary and Conclusions …………..……. ….………………. 87 Chapter 12 Summary and Conclusions 12.1 The Growth of High-Quality Relaxed Si1-xGex Films with an Intermediate Si and Si1-yCy Layer ………………………….…… 88 12.1.1 Si1-xGex/Si/Si1-xGex Heterostructures .................................. 88 12.1.2 Si1-xGex/Si1-yCy/Si1-xGex Heterostructures ........................... 88 12.2 The Growth of High-Quality SiGe Films with a Buffer Layer Containing Ge Quantum Dots ………………………………….. 89 12.3 Self-Assembled Nano-Rings in Si-Capped Ge Quantum Dots on (001) Si ……………………………………………….………… 89 12.4 Self-Assembled Ge Quantum Dots with Improved Field Emission on Si (001) by Methylsilane Mediation …………………...……. 90 12.5 Improved Growth of Ge Quantum Dots in Ge/Si Stacked Layers by Pre-Intermixing Treatments ………………...……….. 91 12.6 In-situ Observation of Evolution of Self-Assembled Ge/Si(113) Islands during Annealing ……………...……………...……….. 91 Chapter 13 Future Prospects 13.1 Fabrication of Ultrathin Ge-on-Insulator ………………..……. 93 13.2 Controlled Placement of Self-Assembled Ge Dots ……….....…. 93 13.3 Growth of High-Quality SiGe Nanowires ……………………. 94 References …………………………………………………….….…… 96 List of Tables ………………………………………………..………. 136 Tables ……........................................................................................... 137 Figure Captions ……........................................................................... 140 Figures ................................................................................................. 149 Publication List ................................................................................... 195

    Chapter 1
    1.1. “The McClean Report 2005 Edition: An In-Depth Analysis and Forecast of the Integrated Circuit,” IC Insight, 2005. (available at http://www.icinsights.com/.)
    1.2. D. J. Paul, “Silicon-Germanium Strained Layer Materials in Microelectronics,” Adv. Mater. 11, 191-204 (1999).
    1.3. “2004 International Technology Roadmap for Semiconductors,” Semiconductor Industry Association, 2004. (available at http://public.itrs.net/.)
    1.4. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, N. Phi, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices 51, 1790-1797 (2004).
    1.5. G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38, (1965).
    1.6. R. People, “Physics and Applications of GexSi1-x/Si Strained-Layer Heterostructures,” IEEE J. Quantum Electron 22, 1696-1710 (1986).
    1.7. F. Schäffler, “High-Mobility Si and Ge Structures,” Semicond. Sci. Technol. 12, 1515-1549 (1997).
    1.8. D. J. Paul, “Silicon-Germanium Strained Layer Materials in Microelectronics,” Adv. Mater. 11, 191-204 (1999).
    1.9. O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electrical Properties,” Semiconductors 34, 1229-2347 (2000).
    1.10. S. H. Olsen, A. G. O’Neill, S. Chattopadhyay, K. S. S. Kwa, L. S. Driscoll, D, J. Norris, A. G. Cullis, D. J. Robbins, and J. Zhang, “Evolution of Strained Si/SiGe Material for High Performance CMOS,” Semicond. Sci. Technol. 19, 707-714 (2004).
    1.11. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    1.12. S. J. Jeng, B. Jagannathan, J.-S. Rieh, J. Johnson, K. T. Schonenberg, D. Greenberg, A. Stricker, H. Chen, M. Khater, D. Ahlgren, G. Freeman, K. Stein, Member, and S. Subbanna, “A 210-GHz f(T) SiGe HBT with a Non-Self-Aligned Structure,” IEEE Electron Device Lett. 22, 542-544 (2001).
    1.13. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992).
    1.14. U. König, A. J. Boers, F. Schäffler, and E. Kasper, “Enhancement Mode N-Channel Si/SiGe MODFET with High Intrinsic Transconductance,” Electron. Lett. 28, 160-162 (1992).
    1.15. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000).
    1.16. M. L. Lee, and E. A. Fitzgerald, “Hole Mobility Enhancements in Nanometer-Scale Strained-Silicon Heterostructures Grown on Ge-rich Relaxed Si1–xGex,” J. Appl. Phys. 94, 2590-2596 (2003).
    1.17. S. F. Nelson, K. Ismail, J. O. Chu, and B. S. Meyerson, “Room-Temperature Electron Mobility in Strained Si/SiGe Hetero- structures,” Appl. Phys. Lett. 63, 367-369 (1993).
    1.18. K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely High Electron Mobility in Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 1077-1079 (1995).
    1.19. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–Semiconductor– Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175-3177 (1998).
    1.20. P. See, D. J. Paul, B. Hollander, S. Mantl, I. V. Zozoulenko, and K.-F. Berggren, “High Performance Si/Si1-xGex Resonant Tunneling Diodes,” IEEE Electron Device Lett. 22, 182-184 (2001).
    1.21. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-temperature Electroluminescence at 1.3 and 1.5 µm from Ge/Si Self-assembled Quantum Dots,” Appl. Phys Lett. 83, 2958-2960 (2003).
    1.22. D. J. Paul, “Si/SiGe Heterostructures: from Material and Physics to Devices and Circuits,” Semicond. Sci. Technol. 19, 75-108 (2004).
    1.23. H. Stöhr, W. Klemm, Z. Anorg. Allgem. Chem. 241, 305-323 (1939).
    1.24. J. W. Matthews and A. E. Blakeslee, “Defects in Epitaxial Multilayers: I. Misfit Dislocations,” J. Cryst. Growth 27, 118-125 (1974).
    1.25. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1–x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy,” J. Vac. Sci. Technol. A 2, 436-440 (1984).
    1.26. D. C. Houghton, “Strain Relaxation Kinetics in Si1-xGex Heterostructures,” J. Appl. Phys. 70, 2136-2151 (1991).
    1.27. C. W. Liu, J. C. Sturm, P. V. Schwartz, and E. A. Fitzgerald, “Misfit Dislocation Nucleation Sites and Metastability Enhancement of Selective Si1-xGex Grown by Rapid Thermal Chemical Vapor Deposition,” Proc. Mater. Res. Soc. Symp. vol. 238, 85-90 (1992).
    1.28. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, “Anomalous Strain Relaxation in SiGe Thin Films and Superlattices,” Phys. Rev. Lett. 66, 2903-2906 (1991).
    1.29. R. Braunstein, A.R. Moore, and F. Herman, “Intrinsic Optical Absorption in Germanium-Silicon Alloys,” Phys. Rev. 109, 695-710 (1958).
    1.30. J. Weber and M. I. Alonso, “Near-Band-Gap Photoluminescence of Si-Ge Alloys,” Phys. Rev. B 40, 5683-5693 (1989).
    1.31. R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Störmer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation Doping in GexSi1–x/Si Strained Layer Heterostructures,” Appl. Phys. Lett. 45, 1231–1233 (1984).
    1.32. E. Kasper and H. J. Herzog, “A One-Dimensional SiGe Superlattice Grown by UHV Epitaxy,” Appl. Phys. 8, 199-205 (1975).
    1.33. A. Ishizaka and Y. Shiraki, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE,” J. Electrochem. Soc. 133, 666-671 (1976).
    1.34. B. S. Meyerson, “UHVCVD Growth of Si and Si:Ge Alloys: Chemistry, Physics, and Device Applications,” Proc. IEEE 80, 1592-1608 (1992).
    1.35. B. S. Meyerson, “Low-temperature Silicon Epitaxy by Ultrahigh Vacuum/Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 797–799 (1986).
    1.36. B. S. Meyerson, F. J. Himpsel, and K. J. Uram, “Bistable Conditions for Low-Temperature Silicon Epitaxy,” Appl. Phys. Lett. 57, 1034–1036 (1990).
    1.37. Y. Shiraki, “The Technology and Physics of Molecular Beam Epitaxy,” (E. H. Parker, Ed.), Plenum Press, New York, 1985.
    1.38. K. L. Wang, J. L. Liu, and G. Jin, “Self-Assembled Ge Quantum Dots on Si and their Applications,” J. Cryst. Growth 237-239, 1892-1897 (2002).
    1.39. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    1.40. K. Rim, J.L. Hoyt, and J.F. Gibbons, “Transconductance Enhancement in Deep Submicron Strained-Si N-MOSFETs,” Technical Digest-International Electron Devices Meeting (San Francisco, CA, 1998), pp. 707–710.
    1.41. P. S. Peercy, B. W. Dodson, J. Y. Tsao, E. D. Jones, D. R. Myers, T. E. Zipperian, L. R. Dawson, R. M. Biefeld, J. F. Klem, and C. R.Hills, “Stability of Strained Quantum-Well Field-Effect Transistor Structures,” IEEE Electron Device Lett. 9, 621-623 (1988).
    1.42. S. B. Samavedam, W. J. Taylor, J. M. Grant, J. A. Smith, P. J. Tobin, A. Dip, A. M. Phillips, and R. Liu, “Relaxation of Strained Si Layers Grown on SiGe Buffers,” J. Vac. Sci. Technol. B 17, 1424-1429 (1999).
    1.43. N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravesteijn, and W. B. de Boer, “Diffusion in Strained Si(Ge),” Phys. Rev. Lett. 72, 2585-2588 (1994).
    1.44. P. W. Li, E. Yang, Y. Yang, J. Chu, and B. Meyerson, “SiGe P-MOSFET’s with Gate Oxide Fabricated by Microwave Electron Cyclotron Resonance Plasma Processing,” IEEE Electron Device Lett. 15, 402-405 (1994).
    1.45. W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, L. J. Chen, Y. H. Peng, and H. H. Cheng, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. Phys. Lett. 81, 820-822 (2002).
    Chapter 2
    2.1. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992).
    2.2. S. A. Ringel, J. A. Carlin, C. L. Andre, M. K. Hudait, M. Gonzalez, D. M. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, “Single-Junction InGaP/GaAs Solar Cells Grown on Si Substrates with SiGe Buffer Layers,” Prog. Photovolt: Res. Appl. 10, 417–426 (2002).
    2.3. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    2.4. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    2.5. D. C. Houghton, “Nucleation Rate and Glide Velocity of Misfit Dislocations in Si1–xGex/(100) Si Heterostructures,” Appl. Phys. Lett. 57, 2124-2126 (1990).
    2.6. E. A. Fitzgerald, “Dislocations in Strained-Layer Epitaxy: Theory, Experiment, and Applications,” Mater. Sci. Rep. 7, 87-142 (1991).
    2.7. G. Schuberth, F. Schäffler, M. Besson, G. Abstreiter, and E. Gornik, “ High Electron Mobility in Modulation-Doped Si/SiGe Quantum Well Structures,” Appl. Phys. Lett. 59, 3318-3320 (1990).
    2.8. B. W. Dodson and J. Y. Tsao, “Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow,” Appl. Phys. Lett. 51, 1325-1327 (1987).
    2.9. E. A. Fitzgerald, Y.-H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y.-J Mii, and B. E. Weir , “Totally Relaxed GexSi1–x Layers with Low Threading Dislocation Densities Grown on Si Substrates,” Appl. Phys. Lett. 59, 811-813 (1991).
    2.10. J. Tersoff, “Dislocations and Strain Relief in Compositionally Graded Layers,” Appl. Phys. Lett. 62, 693-695 (1993).
    2.11. M. T. Bulsara, V. Yang, A. Thilderkvist, E. A. Fitzgerald, K. Haüsler, and K. Eberl, “Graded InxGa1–xAs/GaAs 1.3 µm Wavelength Light Emitting Diode Structures Grown With Molecular Beam Epitaxy,” J. Appl. Phys. 83, 592-599 (1998).
    2.12. A. Y. Kim, W. S. McCullough, and E. A. Fitzgerald, “Evolution of Microstructure and Dislocation Dynamics in InxGa1-xP Graded Buffers Grown on GaP by Metalorganic Vapor Phase Epitaxy: Engineering device-quality substrate materials,” J. Vac. Sci. Technol. B 17, 1485-1501 (1999).
    2.13. P. M. Mooney, “Strain Relaxation and Dislocations in SiGe/Si Structures,” Mater. Sci. Eng. R 17, 105-146 (1996).
    2.14. Y. H. Lo, “New Approach to Grow Pseudomorphic Structures over the Critical Thickness,” Appl. Phys. Lett. 59, 2311-2313 (1991).
    2.15. A. R. Powell, F. K. LeGoues, and S. S. Iyer, “Formation of β-SiC Nanocrystals by the Relaxation of Si1–yCy Random Alloy Layers,” Appl. Phys. Lett. 64, 324-326 (1994).
    2.16. F. E. Ejeckam, Y. H. Lo, S. Submaranian, H. Q. Hou, and B. E. Hammons, “Lattice Engineered Compliant Substrate for Defect-Free Heteroepitaxial Growth,” Appl. Phys. Lett. 70, 1685-1687 (1997).
    2.17. F. Y. Huang, M. A. Chu, M. O. Tanner, K. L. Wang, G. D. U'Ren, and M. S. Goorsky, “High-Quality Strain-Relaxed SiGe Alloy Grown on Implanted Silicon–on–Insulator Substrate,” Appl. Phys. Lett. 76, 2680-2682 (2000).
    2.18. J. H. Li, C. S. Peng, Y. Wu, D. Y. Dai, J. M. Zhou, and Z. H. Mai, “Relaxed Si0.7Ge0.3 Layers Grown on Low-Temperature Si Buffers with Low Threading Dislocation Density,” Appl. Phys. Lett. 71, 3132-3134 (1997).
    2.19. M. A. Chu, M. O. Tanner, F. Y. Huang, K. L. Wang, G. G. Chu, and M. S. Goorsky, “Photoluminescence and X-ray Characterization of Relaxed Si1−xGex Alloys Grown on Silicon-on-Insulator (SOI) and Implanted SOI Substrates,” J. Cryst. Growth 175-176, 1278-1283 (1997).
    2.20. J. Cao, D. Pavlidis, Y. Park, J. Singh, and A. Eisenbach, “Improved Quality GaN by Growth on Compliant Silicon-on-Insulator Substrates Using Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 83, 3829-3834 (1998).
    2.21. K. Brunner, H. Dobler, G. Abstreiter, H. Schäfer, and B. Lustig, “Molecular Beam Epitaxy Growth and Thermal Stability of Si1−xGex Layers on Extremely Thin Silicon-on-Insulator Substrates,“ Thin solid Films 321, 245-250 (1998).
    2.22. K. K. Linder, F. C. Zhang, J.-S. Rieh, P. Bhattacharya, and D. Houghton, “Reduction of Dislocation Density in Mismatched SiGe/Si Using a Low-Temperature Si Buffer Layer,” Appl. Phys. Lett. 70, 3224-3226 (1997).
    2.23. E. Kasper, K. Lyutovich, M. Bauer, and M. Oehme, “New Virtual Substrate Concept for Vertical MOS Transistors,” Thin Solid Films 336, 319-322 (1998).
    2.24. Y. H. Luo, J. Wan, R. L. Forrest, J. L. Liu, G. Jin, M. S. Goorsky, and K. L. Wang, “Compliant Effect of Low-Temperature Si Buffer for SiGe Growth,” Appl. Phys. Lett. 78, 454-456 (2001).
    2.25. S. Mantl, B. Holländer, R. Liedtke, S. Mesters, H. J. Herzog, H. Kibbel, and T. Hackbarth, “Strain Relaxation of Epitaxial SiGe Layers on Si(100) Improved by Hydrogen Implantation,” Nucl. Instrum. Methods Phys. Res. B 147, 29-34 (1999).
    2.26. H. Trinkaus, B. Holländer, St. Rongen, S. Mantl, H.-J. Herzog, J. Kuchenbecker, and T. Hackbarth, “Strain Relaxation Mechanism for Hydrogen-Implanted Si1–xGex/Si(100) Heterostructures,” Appl. Phys. Lett. 76, 3552-3554 (2000).
    2.27. N. Hueging, M. Luysberg, K. Urban, D. Buca, and S. Mantl, “Evolution of the Defect Structure in Helium Implanted SiGe/Si Heterostructures Investigated by In Situ Annealing in a Transmission Electron Microscope,” Appl. Phys. Lett. 86, 042112-1~042112-2 (2005).
    2.28. B. Holländer, D. Buca, M. Mörschbächer, St. Lenk, S. Mantl, H.-J. Herzog, Th. Hackbarth, R. Loo, M. Caymax, and P. F. P. Fichtner, “Strain Relaxation of Pseudomorphic Si1–xGex/Si(100) Heterostructures After Si+ Ion Implantation,” J. Appl. Phys. 96, 1745-1747 (2004).
    2.29. V. S. Avrutin, Y. A. Agafonov, A. F. Vyatkin, V. I. Zinenko, N. F. Izyumskaya, D. V. Irzhak, D. V. Roshchupkin, É. A. Steinman, V. I. Vdovin, and T. G. Yugova, “Low-Temperature Relaxation of Elastic Stresses in SiGe/Si Heterostructures Irradiated with Ge+ Ions,” Semiconductors 38, 313-318 (2004).
    2.30. M. L. Lee and E. A. Fitzgerald, “Hole Mobility Enhancements in Nanometer-Scale Strained-Silicon Heterostructures Grown on Ge-rich Relaxed Si1–xGex,” J. Appl. Phys. 94, 2590-2596 (2003).
    2.31. D. K. Nayak and S. K. Chun, “Low-Field Hole Mobility of Strained Si on (100) Si1–xGex Substrate,” Appl. Phys. Lett. 64, 2514-2516 (1994).
    2.32. M. M. Rieger and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrates,” Phys. Rev. B 48, 14276-14287 (1993).
    2.33. T. Vogelsang and K. R. Hofmann, “Electron Transport in Strained Si Layers on Si1–xGex Substrates,” Appl. Phys. Lett. 63, 186-188 (1993).
    2.34. G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441-2444 (1985).
    2.35. R. People and J. C. Bean, “Band Alignments of Coherently Strained GexSi1–x/Si Heterostructures on <001> GeySi1–y Substrates,” Appl. Phys. Lett. 48, 538-540 (1986).
    2.36. B. Lax and J. G. Mavroides, “Statistics and Galvanomagnetic Effects in Germanium and Silicon with Warped Energy Surfaces,” Phys. Rev. 100, 1650-1657 (1955).
    2.37. S.-I Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative Study of Phonon-Limited Mobility of Two-Dimensional Electrons in Strained and Unstrained Si Metal–Oxide–Semiconductor Field-Effect Transistors,” J. Appl. Phys. 80, 1567-1577 (1996).
    Chapter 3
    3.1. J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J.-P. Noël, and D. C. Houghton, “Well-Resolved Band-Edge Photoluminescence of Excitons Confined in Strained Si1-xGex Quantum Wells,” Phys. Rev. Lett. 66, 1362-1365 (1991).
    3.2. J-Y Su, M-C Wu, W-B Chen, and Y-K Su, “AlGaInP Light-Emitting Diode with Tensile Strain Barrier Reducing Layer,” IEEE Electron Device Lett. 24, 159-161 (2003).
    3.3. S. Subramanian, D. Schulte, L. Ungier, P. Zhao, T. K. Plant, and J. R. Arthur, “A High-Gain, Modulation-Doped Photodetector Using Low-Temperature MBE-Grown GaAs,” IEEE Electron Device Lett. 16, 20-22 (1995).
    3.4. C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs Quantum Cascade Lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron 38, 547-558 (2002).
    3.5. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, “Linewidth Dependence of Radiative Exciton Lifetimes in Quantum Wells,” Phys. Rev. Lett. 59, 2337-2340 (1987).
    3.6. M. A. Reed, “Quantum Dots,” Scientific American, January, 118-123 (1993).
    3.7. M. Zinke-Allmang, L. C. Feldman, S. Nakahara, and B. A. Davidson, “Growth Mechanism and Clustering Phenomena: The Ge-on-Si System,” Phys. Rev. B 39, 7848-7851 (1989).
    3.8. D. J. Eaglesham and M. Cerullo, “Dislocation-Free Stranski- Krastanow Growth of Ge on Si(100),” Phys. Rev. Lett. 64, 1943-1946 (1990).
    3.9. O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electrical Properties,” Semiconductors 34, 1229-2347 (2000).
    3.10. H. Lüth, “Semiconductor Nanostructures: A New Impact on Electronics,” Appl. Surf. Sci. 130-132, 855-865 (1998).
    3.11. K. L. Wang, J. L. Liu, and G. Jin, “Self-Assembled Ge Quantum Dots on Si and Their Applications,” J. Cryst. Growth 237-239, 1892-1897 (2002).
    3.12. M. Stoffel, U. Denker, and O. G. Schmidt, “Electroluminescence of Self-Assembled Ge Hut Clusters,” Appl. Phys. Lett. 82, 3236-3238 (2003).
    3.13. C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “1.55 μm Ge Islands Resonant-Cavity-Enhanced Detector with High-Reflectivity Bottom Mirror,” Appl. Phys. Lett. 85, 2697-2699 (2004).
    3.14. Y. S. Tang, C. M. S. Torres, R. A. Kubiak, T. E. Whall, E. H. C. Parker, H. Presting, and H. Kibbel, “Photoluminescence and Photoreflectance Study of Si/Si0.91Ge0.09 and Si9/Ge6 quantum dots,” J. Electron. Mater. 24, 99-106 (1995).
    3.15. D. M. Eigler and E. K. Schweizer, “Positioning Single Atoms with Scanning Tunnelling Microscope,” Nature 344, 524-526 (1990).
    3.16. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si(001),” Phys. Rev. Lett. 65, 1020-1023 (1990).
    3.17. C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff, “Stress-Induced Self-Organization of Nanoscale Structures in SiGe/Si Multilayer Films,” Phys. Rev. B 53, 16334-16337 (1996).
    3.18. Z.-M. Jiang, H.-J. Zhu, F. Lu, J. Qin, D. Huang, X. Wang, C.-W. Hu, Y. Chen, Z. Zhu, and T. Yao, “Self-Organized Germanium Quantum Dots Grown by Molecular Beam Epitaxy on Si(100),” Thin Solid Films 321, 60-64 (1998).
    3.19. M.A. Grinfeld, “Instability of the Separation Boundary between a Non-Hydrostatically Stressed Elastic Body and a Melt,” Sov. Phys. Dokl. 31, 831–834 (1986).
    3.20. P. O. Hansson, M. Albrecht, W. Dorsch, H. P. Strunk, and E. Bauser, “Interfacial Energies Providing a Driving Force for Ge/Si Heteroepitaxy,” Phys. Rev. Lett. 73, 444-447 (1994).
    3.21. H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island Formation during Growth of Ge on Si(100): A study Using Photoluminescence Spectroscopy,” Appl. Phys. Lett. 66, 3024-3026 (1995).
    3.22. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens, and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol. 11, 1521-1528 (1996).
    3.23. I. N. Stranski and L. Krastanov, “Zur Theorie der orientierten Ausscheidungvon Ionenkristallen aufeinander,“ Sitzungsber. Akad. Wien, Math. Nat. Kl. IIb 146, 797–810 (1937).
    3.24. K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-Assembled Quantum Dots for Optoelectronic Devices on Si and GaAs,” Physica E 9, 164-174 (2001).
    3.25. A. J. Pidduck, D. J. Robbins, A. G. Cullis, W. Y. Leong, and A. M. Pitt, “Evolution of Surface Morphology and Strain during SiGe Epitaxy,” Thin Solid Films 222, 78-84 (1992).
    3.26. J. Tersoff and R. M. Tromp, “Shape Transition in Growth of Strained Islands: Spontaneous Formation of Quantum Wires,” Phys. Rev. Lett. 70, 2782-2785 (1993).
    3.27. M. Kästner and B. Voigtländer, “Kinetically Self-Limiting Growth of Ge Islands on Si(001),” Phys. Rev. Lett. 82, 2745-2748 (1999).
    3.28. O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si(001),” Appl. Phys. Lett. 75, 1905-1907 (1999).
    3.29. E. Sutter, P. Sutter, and J. E. Bernard, “Extended Shape Evolution of Low Mismatch Si1-xGex Alloy Islands on Si(100),” Appl. Phys. Lett. 84, 2262-2264 (2004).
    3.30. F. M. Ross, R. M. Tromp, and M. C. Reuter, “Transition States between Pyramids and Domes during Ge/Si Island Growth,” Science 286, 1931–1934 (1999).
    3.31. F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quantum Dots on Si(001),” Phys. Rev. Lett. 80, 984-987 (1998).
    3.32. J. A. Floro, E. Chason, L. B. Freund, R. D. Twesten, R. Q. Hwang, and G. A. Lucadamo, “Evolution of Coherent Islands in Si1-xGex/Si(001),” Phys. Rev. B 59, 1990-1998 (1999).
    3.33. E. Sutter, P. Sutter, P. Zahl, P. Rugheimer, and M. G. Lagally, “Spontaneous Transition from Epitaxially Constrained to Equilibrium Ge Nanocrystals on Silicon-on-Insulator (100),” Surf. Sci. 532, 785-788 (2003).
    3.34. M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, “STM Study of the Ge Growth Mode on Si(001) Substrates,” Appl. Surf. Sci. 76-77, 322-328 (1994).
    3.35. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998).
    3.36. Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, “Relaxed Template for Fabricating Regularly Distributed Quantum Dot Arrays,” Appl. Phys. Lett. 71, 3567-3569 (1997).
    3.37. E. S. Kim, N. Usami, and Y. Shiraki, “Control of Ge Dots in Dimension and Position by Selective Epitaxial Growth and their Optical Properties,” Appl. Phys. Lett. 72, 1617-1619 (1998).
    3.38. A. Sgarlata, P. D. Szkutnik, A. Balzarotti, N. Motta, and F. Rosei, “Self-Ordering of Ge Islands on Step-Bunched Si(111) Surfaces,” Appl. Phys. Lett. 83, 4002-4004 (2003).
    3.39. G. Springhilz, M. Pinczolits, V. Holy, S. Zerlauth, I. Vavra, and G. Bauer, “Vertical and Lateral Ordering in Self-Organized Quantum Dot Superlattices,” Physica E 9, 149-163 (2001).
    3.40. J. Tersoff, C. Teichert, and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675-1678 (1996).
    3.41. C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff, “Stress-Induced Self-Organization of Nanoscale Structures in SiGe/Si Multilayer Films,” Phys. Rev. B 53, 16334-16337 (1996).
    3.42. E. Mateeva, P. Sutter, J. C. Bean, and M. G. Lagally, “Mechanism of Organization of Three-Dimensional Islands in SiGe/Si Multilayers,” Appl. Phys. Lett. 71, 3233-3235 (1997).
    3.43. O. Kienzle, F. Ernst, M. Rühle, O. G. Schmidt, and K. Eberl, “Germanium "Quantum Dots" Embedded in Silicon: Quantitative Study of Self-Alignment and Coarsening,” Appl. Phys. Lett. 74, 269-271 (1999).
    3.44. O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, “Modified Stranski–Krastanov Growth in Stacked Layers of Self-Assembled Islands,” Appl. Phys. Lett. 74, 1272-1274 (1999).
    3.45. A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, “Realization of a Functional Cell for Quantum-Dot Cellular Automata,” Science 277, 928–930 (1997).
    3.46. O. G. Schmidt, U. Denker, M. Dashiell, N. Y. Jin-Phillipp, K. Eberl, R. Schreiner, H. Gräbeldinger, H. Schweizer, S. Christiansen, and F. Ernst, “Laterally Aligned Ge/Si Islands: A New Concept for Faster Field-Effect Transistors,” Mater. Sci. Eng. B 89, 101-105 (2002).
    3.47. J.-H. Zhu, K. Brunner, and G. Abstreiter, “Two-Dimensional Ordering of Self-Assembled Ge Islands on Vicinal Si(001) Surfaces with Regular Ripples,” Appl. Phys. Lett. 73, 620-622 (1998).
    3.48. H. Omi and T. Ogino, “Self-Organization of Ge Islands on High-Index Si Substrates,” Phys. Rev. B 59, 7521-7528 (1999).
    3.49. A. Ronda and I. Berbezier, “Self-Patterned Si Surfaces as Templates for Ge Islands Ordering,” Physica E 23, 370-376 (2004).
    3.50. S. Y. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, and A. N. Larsen, “Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems,” Phys. Rev. Lett. 78, 503-506 (1997).
    3.51. H. J. Kim, Z. M. Zhao, and Y. H. Xie, “Three-Stage Nucleation and Growth of Ge Self-Assembled Quantum Dots Grown on Partially Relaxed SiGe Buffer Layers,” Phys. Rev. B 68, 205312-1-7 (2003).
    3.52. T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang, and S. Y. Chou, “Positioning of Self-Assembled, Single-Crystal, Germanium Islands by Silicon Nanoimprinting,” Appl. Phys. Lett. 74, 1773-1775 (1999).
    3.53. T. I. Kamins and R. S. Williams, “Lithographic Positioning of Self-Assembled Ge Islands on Si(001),” Appl. Phys. Lett. 71, 1201-1203 (1997).
    3.54. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B.-Y. Nguyen, “Controlled Arrangement of Self-Organized Ge Islands on Patterned Si (001) Substrates,” Appl. Phys. Lett. 75, 2752-2754 (1999).
    3.55. G. Jin, J. L. Liu, and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591-3593 (2000).
    3.56. L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Mück, “Size Distribution and Electroluminescence of Self- Assembled Ge Dots,” J. Appl. Phys. 87, 7275-7282 (2000).
    3.57. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient High-Speed Near-Infrared Ge Photodetectors Integrated on Si substrates,” Appl. Phys. Lett. 76, 1231-1233 (2000).
    3.58. J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and Kang L. Wang, “Band Alignments and Photon-Induced Carrier Transfer from Wetting Layers to Ge Islands Grown on Si(001),” Appl. Phys. Lett. 78, 1763-1765 (2001).
    3.59. V. Higgs, P. Kightley, P. J. Goodhew, and P. D. Augustus, “Metal-induced Dislocation Nucleation for Metastable SiGe/Si,” Appl. Phys. Lett. 59, 829-831 (1991).
    3.60. P. De Padova, P. Perfetti, R. Pizzoferrato, and M. Casalboni, “Comment on "Germanium Dots with Highly Uniform Size Distribution Grown on Si(100) Substrate by Molecular Beam Epitaxy" [Appl. Phys. Lett. 71, 3543 (1997)],” Appl. Phys. Lett. 73, 2378-2379 (1998).
    3.61. Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, W. H. Chang, W. Y. Chen, A. T. Chou, and T. M. Hsu, “Room Temperature 1.3 and 1.55 µm Electroluminescence from Si/Ge Quantum Dots (QDs)/Si Multi-layers,” Appl. Surf. Sci. 224,165-169 (2004).
    3.62. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-Temperature Electroluminescence at 1.3 and 1.55 µm from Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 83, 2958-2960 (2003).
    3.63. O. G. Schmidt, N. Y. Jin-Phillipp, C. Lange, U. Denker, K. Eberl, R. Schreiner, H. Gräbeldinger, and H. Schweizer, “Long-Range Ordered Lines of Self-Assembled Ge Islands on a Flat Si (001) Surface,” Appl. Phys. Lett. 77, 4139-4141 (2000).
    3.64. O. G. Schmidt and K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. Electron Devices 48, 1175-1179 (2001).
    3.65. O. G. Schmidt, K. Eberl, and Y. Rau, “Strain and Band-Edge Alignment in Single and Multiple Layers of Self-Assembled Ge/Si and GeSi/Si Islands,” Phys. Rev. B 62, 16715-16720 (2000).
    3.66. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    3.67. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    3.68. D. Temple, “Recent Progress in Field Emitter Array Development for High Performance Applications,” Mater. Sci. Eng. R 24, 185-239 (1999).
    3.69. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “ SiC-Capped Nanotip Arrays for Field Emission with Ultralow Turn-On Field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
    3.70. W. K. Wong, F. Y. Meng, Q. Li, F. C. K. Au, I. Bello, and S. T. Lee, “Field-Emission Properties of Multihead Silicon Cone Arrays Coated with Cesium,” Appl. Phys. Lett. 80, 877-879 (2002).
    3.71. V. N. Tondare, B. I. Birajdar, N. Pradeep, D. S. Joag, A. Lobo, and S. K. Kulkarni, “Self-Assembled Ge Nanostructures as Field Emitters,” Appl. Phys. Lett. 77, 2394-2396 (2000).
    Chapter 4
    4.1. B. S. Meyerson, “UHV/CVD Growth of Si and Si:Ge Alloys: Chemistry, Physics, and Device Applications,” Proc. IEEE 80, 1592-1608 (1992).
    4.2. A. Ishizaka and Y. Shiraki, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE,” J. Electrochem. Soc. 133, 666-671 (1976).
    4.3. S. K. Lee, Y. H. Ku, and D. L. Kwong, “Silicon Epitaxial Growth by Rapid Thermal Processing Chemical Vapor Deposition,” Appl. Phys. Lett. 54, 1775-1777 (1989).
    4.4. A. D. Lambert, B. M. McGregor, R. J. H. Morris, C. P. Parry, D. P. Chu, G. A. Cooke, P. J. Phillips, T. E. Whall, and E. H. C. Parker, “Contamination Issues during Atomic Hydrogen Surfactant Mediated Si MBE,” Semicond. Sci. Technol. 14, L1-L4 (1999).
    4.5. D. G. Schmmel, “Defect Etch for <100> Silicon Evaluation,” J. Electrochem. Soc. 126, 479-482 (1979).
    4.6. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994).
    4.7. O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si(001),” Appl. Phys. Lett. 75, 1905-1907 (1999).
    4.8. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    Chapter 5
    5.1. T. Vogelsang and K. R. Hofmann, “Electron Transport in Strained Si Layers on Si1–xGex Substrates,” Appl. Phys. Lett. 63, 186-188 (1993).
    5.2. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    5.3. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    5.4. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992).
    5.5. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, “Anomalous Strain Relaxation in SiGe Thin Films and Superlattices,” Phys. Rev. Lett. 66, 2903-2906 (1991).
    5.6. P. M. Mooney, “Strain Relaxation and Dislocations in SiGe/Si Structures,” Mater. Sci. Eng. R 17, 105-146 (1996).
    5.7. P. M. Mooney, J. L. Jordan-Sweet, K. Ismail, J. O. Chu, R. M. Feenstra, and F. K. LeGoues, “Relaxed Si0.7Ge0.3 Buffer Layers for High-Mobility Devices,” Appl. Phys. Lett. 67, 2373-2375 (1995).
    5.8. P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues, “Evolution of Strain Relaxation in Step-Graded SiGe/Si Structures,” Appl. Phys. Lett. 66, 3642-3644 (1995).
    5.9. D. G. Schmmel, “Defect Etch for <100> Silicon Evaluation,” J. Electrochem. Soc. 126, 479-482 (1979).
    5.10. L. Di Gaspare, E. Palange, G. Capellini, and F. Evangelisti, “Strain Relaxation by Pit Formation in Epitaxial SiGe Alloy Films Grown on Si(001),” J. Appl. Phys. 88, 120-123 (2000).
    5.11. Y. H. Luo, J. Wan, R. L. Forrest, J. L. Liu, G. Jin, M. S. Goorsky, and K. L. Wang, “Compliant Effect of Low-Temperature Si Buffer for SiGe Growth,” Appl. Phys. Lett. 78, 454-456 (2001).
    5.12. G. Z. Pan, K. N. Tu, and S. Prussin, “Microstructural Evolution of {113} Rodlike Defects and {111} Dislocation Loops in Silicon-Implanted Silicon,” Appl. Phys. Lett. 71, 659-661 (1997).
    5.13. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994).
    5.14. K. Lyutovich, M. Bauer, E. Kasper, H.-J. Herzog, T. Perova, R. Maurice, C. Hofer, and C. Teichert, “Thins SiGe Buffers with High Ge Content for N-MOSFET’s,” Mater. Sci. Eng. B 89, 341-345 (2002).
    5.15. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the Universality of Inversion Layer Mobility in Si MOSFET’s: Part I-Effects of Substrate Impurity Concentration,” IEEE Trans. Electron Devices 41, 2357-2362 (1994).
    Chapter 6
    6.1. Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Theil, and G. P. Watson, “Very High Mobility Two-Dimensional Hole Gas in Si/GexSi1–x/Ge Structures Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 63, 2263-2264 (1993).
    6.2. T. Vogelsang and K. R. Hofmann, “Electron Transport in Strained Si Layers on Si1–xGex Substrates,” Appl. Phys. Lett. 63, 186-188 (1993).
    6.3. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000).
    6.4. K. Rim, J. L. Hoyt, and F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Devices 47, 1406-1415 (2001).
    6.5. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    6.6. P. M. Mooney, “Strain Relaxation and Dislocations in SiGe/Si structures,” Mater. Sci. Eng. R 17, 105-146 (1996).
    6.7. K. Sawano, S. Koh, Y. Shiraki, Y. Hirose, T. Hattori, and K. Nakagawa, “Mobility Enhancement in Strained Si Modulation-Doped Structures by Chemical Mechanical Polishing,” Appl. Phys. Lett. 82, 412-414 (2003).
    6.8. S. W. Lee, H. C. Chen, L. J. Chen, Y. H. Peng, C. H. Kuan, and H. H. Cheng, “Effects of Low-Temperature Si Buffer Layer Thickness on the Growth of SiGe by Molecular Beam Epitaxy,” J. Appl. Phys. 92, 6880-6885 (2002).
    6.9. M. Bauer, M. Oehme, K. Lyutovich, and E. Kasper, “Ion Assisted MBE Growth of SiGe Nanostructures,” Thin Solid Film 336, 104-108 (1998).
    6.10. Y. H. Luo, J. L. Liu, G. Jin, J. Wan, K. L. Wang, C. D. Moore, M. S. Goorsky, C. Chih, and K. N. Tu, “Effective Compliant Substrate for Low-Dislocation Relaxed SiGe Growth,” Appl. Phys. Lett. 78, 1219-1221 (2001).
    6.11. D. G. Schmmel, “Defect Etch for <100> Silicon Evaluation,” J. Electrochem. Soc. 126, 479-482 (1979).
    6.12. L. Di Gaspare, E. Palange, G. Capellini, and F. Evangelisti, “Strain Relaxation by Pit Formation in Epitaxial SiGe Alloy Films Grown on Si(001),” J. Appl. Phys. 88, 120-123 (2000).
    6.13. S. W. Lee, P. S. Chen, M.-J. Tsai, C. T. Chia, C. W. Liu, and L. J. Chen, “The Growth of High-Quality SiGe Films with an Intermediate Si Layer,” Thin Solid Film 447-448, 302-305 (2004).
    6.14. M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, “Influence of Misfit Dislocations on the Surface Morphology of Si1–xGex films,” Appl. Phys. Lett. 66, 724-726 (1995).
    6.15. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994).
    6.16. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the Universality of Inversion Layer Mobility in Si MOSFET’s: Part I-Effects of Substrate Impurity Concentration,” IEEE Trans. Electron Devices 41, 2357-2362 (1994).
    Chapter 7
    7.1. T. Vogelsang and K. R. Hofmann, “Electron Transport in Strained Si Layers on Si1–xGex Substrates,” Appl. Phys. Lett. 63, 186-188 (1993).
    7.2. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000).
    7.3. M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge Channels for High-Mobility Metal-Oxide-Semiconductor Field-Effect Transistors,” J. Appl. Phys. 97, 011101-1~011101-27 (2005).
    7.4. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992).
    7.5. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, “Anomalous Strain Relaxation in SiGe Thin Films and Superlattices,” Phys. Rev. Lett. 66, 2903-2906 (1991).
    7.6. P. M. Mooney, “Strain Relaxation and Dislocations in SiGe/Si Structures,” Mater. Sci. Eng. R 17, 105-146 (1996).
    7.7. P. M. Mooney, J. L. Jordan-Sweet, K. Ismail, J. O. Chu, R. M. Feenstra, and F. K. LeGoues, “Relaxed Si0.7Ge0.3 Buffer Layers for High-Mobility Devices,” Appl. Phys. Lett. 67, 2373-2375 (1995).
    7.8. P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues, “Evolution of Strain Relaxation in Step-Graded SiGe/Si Structures,” Appl. Phys. Lett. 66, 3642-3644 (1995).
    7.9. S. W. Lee, H. C. Chen, L. J. Chen, Y. H. Peng, C. H. Kuan, and H. H. Cheng, “Effects of Low-Temperature Si Buffer Layer Thickness on the Growth of SiGe by Molecular Beam Epitaxy,” J. Appl. Phys. 92, 6880-6885 (2002).
    7.10. M. Bauer, M. Oehme, K. Lyutovich, and E. Kasper, “Ion Assisted MBE Growth of SiGe Nanostructures,” Thin Solid Film 336, 104-108 (1998).
    7.11. Y. H. Luo, J. L. Liu, G. Jin, J. Wan, K. L. Wang, C. D. Moore, M. S. Goorsky, C. Chih, and K. N. Tu, “Effective Compliant Substrate for Low-Dislocation Relaxed SiGe Growth,” Appl. Phys. Lett. 78, 1219-1221 (2001).
    7.12. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998).
    7.13. S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, “Self-Assembled Nanorings in Si-Capped Ge Quantum Dots on (001)Si,” Appl. Phys. Lett. 83, 5283-5285 (2003).
    7.14. D. G. Schmmel, “Defect Etch for <100> Silicon Evaluation,” J. Electrochem. Soc. 126, 479-482 (1979).
    7.15. J. Tersoff, C. Teichert, and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675-1678 (1996).
    7.16. A. Sakai, K. Sugimoto, T. Yamamoto, M. Okada, H. Ikeda, Y. Yasuda, and S. Zaima, “Reduction of Threading Dislocation Density in SiGe Layers on Si (001) Using a Two-Step Strain-Relaxation Procedure,” Appl. Phys. Lett. 79, 3398-3400 (2001).
    7.17. M. M. Rahman, H. Matada, T. Tambo, and C. Tatsuyama, “Growth of Si0.75Ge0.25 Alloy Layers Grown on Si(001) Substrates Using Step-Graded Short-Period (Sim/Gen)N Superlattices,” J. Appl. Phys. 90, 202-208 (2001).
    7.18. S. W. Lee, P. S. Chen, M.-J. Tsai, C. T. Chia, C. W. Liu, and L. J. Chen, “The Growth of High-Quality SiGe Films with an Intermediate Si Layer,” Thin Solid Film 447-448, 302-305 (2004).
    7.19. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994).
    7.20. P. S. Chen, Z. Pei, Y. H. Peng, S. W. Lee, and M.-J. Tsai, “Boron Mediation on the Growth of Ge Quantum Dots on Si (100) by Ultra High Vacuum Chemical Vapor Deposition System,” Mater. Sci. Eng. B 108, 213-218 (2004).
    7.21. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the Universality of Inversion Layer Mobility in Si MOSFET’s: Part I-Effects of Substrate Impurity Concentration,” IEEE Trans. Electron Devices 41, 2357-2362 (1994).
    Chapter 8
    8.1. O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electrical Properties,” Semiconductors 34, 1229-2347 (2000).
    8.2. O. G. Schmidt and K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. Electron Devices 48, 1175-1179 (2001).
    8.3. K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-Assembled Quantum Dots for Optoelectronic Devices on Si and GaAs,” Physica E 9, 164-174 (2001).
    8.4. M. Stoffel, U. Denker, and O. G. Schmidt, “Electroluminescence of Self-Assembled Ge Hut Clusters,” Appl. Phys. Lett. 82, 3236-3238 (2003).
    8.5. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-Temperature Electroluminescence at 1.3 and 1.55 µm from Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 83, 2958-2960 (2003).
    8.6. V. N. Tondare, B. I. Birajdar, N. Pradeep, D. S. Joag, A. Lobo, and S. K. Kulkarni, “Self-Assembled Ge Nanostructures as Field Emitters,” Appl. Phys. Lett. 77, 2394-2396 (2000).
    8.7. P. Sutter and M. G. Lagally, “Embedding of Nanoscale 3D SiGe Islands in a Si Matrix,” Phys. Rev. Lett. 81, 3471-3474 (1998).
    8.8. N. Usami, M. Miura, Y. Ito, Y. Araki, and Y. Shiraki, “Drastic Increase of the Density of Ge Islands by Capping with a Thin Si Layer,” Appl. Phys. Lett. 77, 217-219 (2000).
    8.9. A. Rastelli, M. Kummer, and H. von Känel, “Reversible Shape Evolution of Ge Islands on Si(001),” Phys. Rev. Lett. 87, 256101-1~256101-4 (2001).
    8.10. T. I. Kaimins, G. Mederiros-Ribeiros, D. A. A. Ohlberg, and R. Stanely Williams, “Evolution of Ge Islands on Si(001) During Annealing,” J. Appl. Phys. 85, 1159-1171 (1999).
    8.11. F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quantum Dots on Si(001),” Phys. Rev. Lett. 80, 984-987 (1998).
    8.12. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998).
    8.13. D. Granados and J. García, “In(Ga)As Self-Assembled Quantum Ring Formation by Molecular Beam Epitaxy,” Appl. Phys. Lett. 82, 2401-2403 (2003).
    8.14. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, “Spectroscopy of Nanoscopic Semiconductor Rings,” Phys. Rev. Lett. 84, 2223-2226 (2000).
    8.15. J. C. Lin and G. Y. Guo, “Current-Spin Density-Functional Theory of the Electronic and Magnetic Properties of Quantum Dots and Quantum Rings,” Phys. Rev. B 65, 035304-1~035304-10 (2002).
    8.16. J. Liu, A. Zaslavsky, B. R. Perkins, C. Aydin, and L. B. Freund, “Single-Hole Tunneling into a Strain-Induced SiGe Quantum Ring,” Phys. Rev. B 66, 161304-1~161304-4 (2002).
    8.17. J. Liu, A. Zaslavsky, and L. B. Freund, “Strain-Induced Quantum Ring Hole States in a Gated Vertical Quantum Dot,” Phys. Rev. Lett. 89, 096804 (2002).
    8.18. E. Sutter, P. Sutter, and J. E. Bernard, “Extended Shape Evolution of Low Mismatch Si1–xGex Alloy Islands on Si(100),” Appl. Phys. Lett. 84, 2262-2264 (2004).
    8.19. A. V. Kolobov, K. Morita, K. M. Itoh, and E. E. Haller, “A Raman Scattering Study of Self-Assembled Pure Isotope Ge/Si(100) Quantum Dots,” Appl. Phys. Lett. 81, 3855-3857 (2002).
    8.20. F. Cerdeira, A. Pinczuk, J. C. Bean, B. Batlogg, and B. A. Wilson, “Raman Scattering from GexSi1–x/Si Strained-Layer Superlattices,” Appl. Phys. Lett. 45, 1138-1140 (1984).
    8.21. J. Cui, Q. He, X. M. Jiang, Y. L. Fan, X. J. Yang, F. Xue, and Z. M. Jiang, “Self-Assembled SiGe Quantum Rings Grown on Si(001) by Molecular Beam Epitaxy,” Appl. Phys. Lett. 83, 2907-2909 (2003).
    8.22. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “ SiC-Capped Nanotip Arrays for Field Emission with Ultralow Turn-on Field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
    8.23. R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928).
    8.24. W. K. Wong, F. Y. Meng, Q. Li, F. C. K. Au, I. Bello, and S. T. Lee, “Field-Emission Properties of Multihead Silicon Cone Arrays Coated with Cesium,” Appl. Phys. Lett. 80, 877-879 (2002).
    Chapter 9
    9.1. C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng, and C. H. Tung, “Optical Properties of Ge Self-Organized Quantum Dots in Si,” Phys. Rev. B 57, 8805-8808 (1998).
    9.2. V. N. Tondare, B. I. Birajdar, N. Pradeep, D. S. Joag, A. Lobo, and S. K. Kulkarni, “Self-Assembled Ge Nanostructures as Field Emitters,” Appl. Phys. Lett. 77, 2394-2396 (2000).
    9.3. L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Mück, “Size Distribution and Electroluminescence of Self- Assembled Ge Dots,” J. Appl. Phys. 87, 7275-7282 (2000).
    9.4. O. G. Schmidt and K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. Electron Devices 48, 1175-1179 (2001).
    9.5. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-Temperature Electroluminescence at 1.3 and 1.55 μm from Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 83, 2958-2960 (2003).
    9.6. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998).
    9.7. H. J. Kim and Y. H. Xie, “Influence of the Wetting-Layer Growth Kinetics on the Size and Shape of Ge Self-Assembled Quantum Dots on Si(001),” Appl. Phys. Lett. 79, 263-265 (2001).
    9.8. M. W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, “Photoluminescence of Ultrasmall Ge Quantum Dots Grown by Molecular-Beam Epitaxy at Low Temperatures,” Appl. Phys. Lett. 80, 1279-1281 (2002).
    9.9. G. Jin, J. L. Liu, and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591-3593 (2000).
    9.10. Y. Zhang and J. Drucker, “Annealing-Induced Ge/Si(100) Island Evolution,” J. Appl. Phys. 93, 9583-9590 (2003).
    9.11. O. G. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, “Formation of Carbon-Induced Germanium Dots,” Appl. Phys. Lett. 71, 2340-2342 (1997).
    9.12. O. Leifeld, R. Hartmann, E. Müller, E. Kaxiras, K. Kern, and D. Grützmacher, “Self-Organized Growth of Ge Quantum Dots on Si(001) Substrates Induced by Sub-Monolayer C Coverages,” Nanotechnology 10, 122-126 (1999).
    9.13. M. Liehr, C. M. Greenlief, S. R. Kasi, and M. Offenberg, “Kinetics of Silicon Epitaxy Using SiH4 in a Rapid Thermal Chemical Vapor Deposition Reactor,” Appl. Phys. Lett. 56, 629-631 (1990).
    9.14. T. I. Kaimins, G. Mederiros-Ribeiros, D. A. A. Ohlberg, and R. Stanely Williams, “Evolution of Ge Islands on Si(001) During Annealing,” J. Appl. Phys. 85, 1159-1171 (1999).
    9.15. A. C. Mocuta and D. W. Greve, “Epitaxial Si1-yCy Alloys: The Role of Surface and Gas Phase Reactions,” J. Appl. Phys. 85, 1240-1242 (1999).
    9.16. R. W. Price, E. S. Tok, N. J. Woods, and J. Zhang, “Growth Dynamics of Si1-yCy and Si1-x-yGexCy on Si(001) Surface from Disilane, Germane, and Methylsilane,” Appl. Phys. Lett. 81, 3780-3782 (2002).
    9.17. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, “Self-Assembled Nanorings in Si-Capped Ge Quantum Dots on (001)Si,” Appl. Phys. Lett. 83, 5283-5285 (2003).
    9.18. O. Leifeld, A. Beyer, D. Grützmacher, and K. Kern, “Nucleation of Ge Dots on the C-alloyed Si(001) Surface,” Phys. Rev. B 66, 125312-125315 (2002).
    9.19. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-Capped Nanotip Arrays for Field Emission with Ultralow Turn-on Field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
    9.20. R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A 119, 173-181 (1928).
    Chapter 10
    10.1. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si(001),” Phys. Rev. Lett. 65, 1020-1023 (1990).
    10.2. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens, and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol. 11, 1521-1528 (1996).
    10.3. O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electrical Properties,” Semiconductors 34, 1229-2347 (2000).
    10.4. K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-Assembled Quantum Dots for Optoelectronic Devices on Si and GaAs,” Physica E 9, 164-174 (2001).
    10.5. O. G. Schmidt and K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. Electron Devices 48, 1175-1179 (2001).
    10.6. G. Medeiros-Ribeiro, A. M. Brathovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998).
    10.7. F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of Self-Assembled Ge Quantum Dots on Si(001),” Phys. Rev. Lett. 80, 984-987 (1998).
    10.8. J. Tersoff, C. Teichert, and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675-1678 (1996).
    10.9. O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, “Modified Stranski–Krastanov Growth in Stacked Layers of Self-Assembled Islands,” Appl. Phys. Lett. 74, 1272-1274 (1999).
    10.10. P. Sutter and M. G. Lagally, “Embedding of Nanoscale 3D SiGe Islands in a Si Matrix,” Phys. Rev. Lett. 81, 3471-3474 (1998).
    10.11. O. G. Schmidt, U. Denker, K. Eberl, O. Kienzle, and F. Ernst, “Effect of Overgrowth Temperature on the Photoluminescence of Ge/Si Islands,” Appl. Phys. Lett. 77, 2509-2511 (1999).
    10.12. E. Carlino, L. Tapfer, and H. von Känel, “Coherent Islands as Preferential Sites for Sticking of Ge Atoms in Si/Ge Multilayers: Formation of Conical Shaped Defects,” Appl. Phys. Lett. 69, 2546-2548 (1996).
    10.13. T. I. Kaimins, G. Mederiros-Ribeiros, D. A. A. Ohlberg, and R. Stanely Williams, “Evolution of Ge Islands on Si(001) During Annealing,” J. Appl. Phys. 85, 1159-1171 (1999).
    10.14. A. Krost, J. Böhrer, A. Dadgar, R. F. Schnabel, D. Bimberg, S. Hansmann, and H. Burkhard, “High-Resolution X-Ray Analysis of Compressively Strained 1.55 µm GaInAs/AlGaInAs Multiquantum Well Structures near the Critical Thickness,” Appl. Phys. Lett. 67, 3325-3327 (1995).
    10.15. P. De Padova, P. Perfetti, R. Pizzoferrato, and M. Casalboni, “Comment on "Germanium Dots with Highly Uniform Size Distribution Grown on Si(100) Substrate by Molecular Beam Epitaxy" [Appl. Phys. Lett. 71, 3543 (1997)],” Appl. Phys. Lett. 73, 2378-2379 (1998).
    10.16. S. Fukatsu, Y. Mera, M. Inou, K. Maeda, H. Akiyama, and H. Sakaki, “Time-Resolved D-Band Luminescence in Strain-Relieved SiGe/Si,” Appl. Phys. Lett. 68, 1889-1891 (1996).
    10.17. V. Higgs, P. Kightley, P. J. Goodhew, and P. D. Augustus, “Metal-Induced Dislocation Nucleation for Metastable SiGe/Si,” Appl. Phys. Lett. 59, 829-831 (1991).
    Chapter 11
    11.1. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, “Silicon-Germanium Nanostructures with Quantum Dots: Formation Mechanisms and Electrical Properties,” Semiconductors 34, 1229-2347 (2000).
    11.2. K. Eberl. M. O. Lipinski, Y. M. Manz, W. Winter, N. Y. Jin-Phillipp, and O. G. Schmidt, “Self-Assembled Quantum Dots for Optoelectronic Devices on Si and GaAs,” Physica E 9, 164-174 (2001).
    11.3. W.-H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M.-J. Tsai, “Room-Temperature Electroluminescence at 1.3 and 1.55 µm from Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 83, 2958-2960 (2003).
    11.4. M. Stoffel, U. Denker, and O. G. Schmidt, “Electroluminescence of Self-Assembled Ge Hut Clusters,” Appl. Phys. Lett. 82, 3236-3238 (2003).
    11.5. H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island Formation during Growth of Ge on Si(100): A study Using Photoluminescence Spectroscopy,” Appl. Phys. Lett. 66, 3024-3026 (1995).
    11.6. Y. Zhang and J. Drucker, “Annealing-Induced Ge/Si(100) Island Evolution,” J. Appl. Phys. 93, 9583-9590 (2003).
    11.7. E. Sutter, P. Sutter, and J. E. Bernard, “Extended Shape Evolution of Low Mismatch Si1-xGex Alloy Islands on Si(100),” Appl. Phys. Lett. 84, 2262-2264 (2004).
    11.8. G. Capellini, M. D. Seta, F. Evangelisti, and C. Spinella, “Strain Relief Mechanisms in Ge/Si(100) Islands,” Mater. Sci. Eng. B 101, 106-110 (2003).
    11.9. P. Ferrandis and L. Vescan, “Growth and Characterization of Ge Islands on Si(110),” Mater. Sci. Eng. B 89, 171-175 (2002).
    11.10. G. Jin, Y. S. Tang, J. L. Liu, and K. L. Wang, “Growth and Study of Self-Organized Ge Quantum Wires on Si(111) Substrates,” Appl. Phys. Lett. 74, 2471-2473 (2003).
    11.11. H. Omi and T. Ogino, “Self-Organization of Ge Islands on High-Index Si Substrates,” Phys. Rev. B 59, 7521-7528 (1999).
    11.12. A. V. Kolobov, K. Morita, K. M. Itoh, and E. E. Haller, “A Raman Scattering Study of Self-Assembled Pure Isotope Ge/Si(100) Quantum Dots,” Appl. Phys. Lett. 81, 3855-3857 (2002).
    Chapter 13
    13.1. Z.-Y. Cheng, M. T. Currie, C. W. Leitz, G. Taraschi, E. A. Fitzgerald, J. L. Hoyt, and D. A. Antoniadas, “Electron Mobility Enhancement in Strained-Si n-MOSFETs Fabricated on SiGe-on-Insulator(SGOI) Substrates,” IEEE Electron Device Lett. 22, 321-323 (2001).
    13.2. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000).
    13.3. E. M. Rehder, C. K. Inoki, T. S. Kuan, and T. F. Kuech, “SiGe Relaxation on Silicon-on-Insulator Substrates: An Experimental and Modeling Study,” J. Appl. Phys. 94, 7892-7903 (2003).
    13.4. G. Taraschi, A. J. Pitera, and E. A. Fitzgerald, “Strained Si, SiGe and Ge on-Insulator: Review of Wafer Bonding Fabrication Techniques,” Solid-State Electronics 48, 1297-1305 (2004).
    13.5. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of Strained Si on an Ultrathin SiGe-on-Isulator Virtual Substrate with a High-Ge Fraction,” Appl. Phys. Lett. 79, 1798-1800 (2001).
    13.6. O. G. Schmidt, U. Denker, M. Dashiell, N. Y. Jin-Phillipp, K. Eberl, R. Schreiner, H. Gräbeldinger, H. Schweizer, S. Christiansen, and F. Ernst, “Laterally Aligned Ge/Si Islands: A New Concept for Faster Field-Effect Transistors,” Mater. Sci. Eng. B 89, 101-105 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE