簡易檢索 / 詳目顯示

研究生: 蘇羿匡
Su, Yi-Kuang
論文名稱: 基於離散哈特利轉換之濾波器組多載波系統的通道估測技術
Channel Estimation for a DHT-Based Filter Bank Multicarrier System
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 李志鵬
歐陽源
吳東興
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 32
中文關鍵詞: 離散哈特利轉換濾波器組多載波系統通道估測
外文關鍵詞: Discrete Hartley Transform, Filter Bank Multicarrier System, Channel Estimation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們為離散哈特利轉換 (discrete Hartley transform;DHT)濾波器組多載波 (FBMC) 系統提出了基於前置序列 (Preamble) 的通道估測方法,包含在單輸入單輸出以及多重輸入多重輸出的場景下。在此系統中使用兩個原型濾波器,一個用於偶數子載波,另一個用於奇數子載波,且需要經過適當的設計來最小化自我干擾。由於偶數部分子載波比奇數部分具有更少的干擾,因此我們提出了僅使用前者的前置序列設計來進行通道估測。一旦估計了偶數部分子載波的通道增益,就可以輕易地通過線性內插來獲得奇數部分的通道增益。利用所提出的方法,當偶數部分子載波用於發送估計通道的前置序列時,奇數部分的子載波可以用來數據傳輸。電腦模擬結果顯示,與使用所有子載波進行通道估測的一般方法相比,我們所提出的基於前置序列的通道估測方案在均方誤差 (MSE) 以及位元錯誤率 (BER) 等方面達到了更好的效能。且在具有高信噪比,更小的通道延遲擴展 (delay spread) 或更多用於傳輸的子載波情況下的效能都會更好。


    In this thesis, we investigate preamble-based channel estimation for a filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT), including single-input single-output (SISO) and multiple-input multiple-output (MIMO) scenarios. In the FBMC system, two prototype filters are used, one for the even-numbered (even-part’s) subcarriers and the other for the odd-numbered (odd-part’s) subcarriers, and they must be designed appropriately to minimize self-interference. Because the even-part’s subcarriers suffer less interference than the odd-part’s subcarriers, we propose a preamble design that uses only the even-parts subcarriers for channel estimation. Once the even-part subcarriers’ channel gains are estimated, those for the odd part can easily be obtained by linear interpolation. Using the proposed method, the odd-part’s subcarriers can be used for data transmission at the same time the even-part’s subcarriers are used to transmit preambles for channel estimation. Computer simulation results show that the proposed preamble-based channel estimation scheme achieves better performance, in terms of the mean-squared error and the bit error rate, than the general approach using all subcarriers for channel estimation. The performance also is better in situations with a high signal-to-noise ratio, with a smaller channel delay spread, or with more subcarriers for transmission.

    Abstract i Contents ii List of Figures iii List of Tables v I. Introduction 1 II. System Model 4 A. DHT-based FBMC System with Two Prototype Filters 4 B. Signal Model in a SISO Scenario 8 C. Signal Model in a MIMO Scenario 10 III. Proposed Methods 12 A. Residual Interference in a Multipath Channel 12 B. Using an Even-Based Preamble for Channel Estimation in a SISO Scenario 14 C. Using an Even-Based Preamble for Channel Estimation in a MIMO Scenario 17 IV. Simulation Results 21 V. Conclusion 30 References 31

    [1] J. A. C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Com. Mag., vol. 28, no. 5, pp. 5–17, May. 1990.
    [2] B. Le. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex [TV broadcasting],” Proc. IEEE, vol. 83, no. 6, pp. 982–996, Jun. 1995.
    [3] S. Weinstein and P. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. 19, pp. 628–634, Oct. 1971.
    [4] B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May. 2011.
    [5] P. P. Vaidyanathan, Multirate System and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993.
    [6] B. D. Tensubam, N. L. Chanu, and S. Singh, “Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks,” International Journal of Computer Applications, vol. 100, no. 19, Aug. 2014.
    [7] L. G. Baltar, I. Slim, and J. A. Nossek, “Efficient filter bank multicarrier realizations for 5G,” in Proc. 2015 IEEE International Symposium on Circuits and Systems (ISCAS’15), Lisbon, PRT, May 2015, pp. 2608–2611.
    [8] A. Bedoui and M. Et-tolba, “A comparative analysis of filter bank multicarrier (FBMC) as 5G multiplexing technique,” in Proc. IEEE International Conference on Wireless Networks and Mobile Communications (WINCOM’17), Rabat, MA. Nov. 2017, pp. 1–7.
    [9] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
    [10] R. Zakaria, D. Le Ruyet, and M. Bellanger, “Maximum likelihood detection in spatial multiplexing with FBMC,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1038–1041.
    [11] M. Renfors, T. Ihalainen, and T. H. Stitz, “A block-Alamouti scheme for filter bank based multicarrier transmission,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1031–1037.
    [12] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
    [13] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
    [14] H. -S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
    [15] B. Kwon, S. Kim and S. Lee, “Scattered Reference Symbol-Based Channel Estimation and Equalization for FBMC-QAM Systems,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3522–3537, Aug. 2017.
    [16] Y. –H. Cho, C. Kim, K. Kim, Y. H. Yun, Z. Ho and J. –Y. Seol, “Channel estimation performance of OQAM/FBMC and QAM/FBMC systems,” in Proc. IEEE International Symposium on Wireless Communication Systems (ISWCS’15), Brussels, BE, Aug. 2015, pp. 551–555.
    [17] S. Taheri, M. Ghoraishi and P. Xiao, “Overhead reduced preamble-based channel estimation for MIMO-FBMC systems,” in Proc. IEEE International Wireless Communications and Mobile Computing Conference (IWCMC’15), Dubrovnik, HR, Aug. 2015, pp. 1435–1439.
    [18] C. -H. Wang, “Data detection for a DHT-based MIMO filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
    [19] K. -C. Yang, “Time and frequency synchronization for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
    [20] C. -T. Tuan, “A discrete Hartley transform based filter bank multicarrier transmission system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
    [21] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.

    QR CODE