研究生: |
李馥妤 Lee, Fu-Yu |
---|---|
論文名稱: |
最小上界比較與最大下界比較收縮映射之隨機不動點定理 Random fixed point theorems for sup-comparable and inf-comparable contraction |
指導教授: |
陳啟銘
Chen, Chi-Ming |
口試委員: |
李俊璋
Lee, Chiun-Chang 陳中川 Chen, Chung-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | 隨機不動點 、收縮映射 、最小上界 、最大下界 、隨機不動點定理 |
外文關鍵詞: | Random fixed point theorems, sup-comparable contraction, inf-comparable contraction, Random fixed point, contraction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們探討關於在隨機度量空間中的隨機不動點,藉由最小上界比較收縮映射的函數,和最大下界比較收縮映射的函數,證明了隨機不動點的存在定理。我們的結論推廣文獻中的不動點定理。
In this paper, we discuss about random fixed points in random metric spaces, by sup-comparable contraction map, and inf-comparable contraction map, respectively proving the existence of a random fixed point.Qur results generalize fixed point theorems in the literature.
[1] I. Beg, and N. Shahzad, An application of a random fixed point theorem to random best approximation, Arch. Math., 74 (2000), 298-301.
[2] I. Beg, and N. Shahzad: Applications of the proximity map to random fixed point theorems in Hilbert spaces, J. Math. Anal. Appl., 196 (1995), 606-613.
[3] AT. Bharucha-Reid: Fixed point theorems in probabilistic analysis, Bull. Am. Math. Soc., 82 (1976), 641-645.
[4] C.-M. Chen, Fixed point theorems for the ψ-set contraction mapping on almost convex sets, Nonlinear Analysis 71 (2009) 2600–2605.
[5] W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology and Applications, 159(2012), 49–56.
[6] O. Hans: Reduzierende zufallige Transformationen, Czechoslov. Math. J., 7 (19567), 154-158.
[7] O. Hans, ”Random fixed point theorem,” in Proceedings of the 1st Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, Czech, (1956), 105-125.
[8] S. Itoh, A random fixed point theorem for a multivalued contraction mapping, Pacific Journal of Mathematics, 68 (1977), no. 1, 85-90.
[9] Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(2) (1979), 261-273.
[10] P. Kumam: Fixed point theorem and random fixed point theorems for
set-valued non-self-mappings, Thai J. Math., 2(2) (2004), 295-307.
[11] TC. Lin: Random approximations and random fixed point theorems for continuous 1-set-contractive random maps, Proc. Am.Math. Soc., 123
(1995), 1167-1176. 18
[12] TC. Lin: Random approximations and random fixed point theorems for nonself maps, Proc. Am.Math. Soc., 103 (1988), 1129-1135.
[13] Ns. Papageorgiou: Random fixed point theorems for measurable multifunctions in Banach spaces. Soc. Proc. Am. Math. Soc, 97 (1986), 507-514
[14] P. Lorenzo Ramirez, Some random fixed point theorems for nonlinear mappings, Nonlinear Analysis, 50 (2002), no. 2, 265-274.
[15] A. Spacek: Zufallige Gleichungen, Czechoslov. Math. J., (1955), no. 5, 462-446.
[16] VM. Sehgal,C. Waters: Some random fixed point theorems for condensing operators, Proc. Am. Math. Soc., 93 (1984),425-429.
[17] VM. Sehgal, SP. Singh: On random approximations and a random fixed point theorem for set-valued mappings, Proc. Am. Math. Soc., 95 (1985), 91-94.
[18] K.-K. Tan and X.-Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications, (1991), no. 2, 334-345.
[19] K.-K. Tan and X.-Z. Yuan, Random fixed point theorems and approximation, Stoch. Anal. Appl, 15 (1997), no. 2, 103-123.
[20] K.-K. Tan and X.-Z. Yuan: Some Random fixed point theorem ”, in: K.-K.Tan (Ed), Fixed Point Theory and Applications, Wold Sciedtific, Singapro, (1992) 334-345.
[21] D.-H.Wagner, Survey of measurable selection theorems, SIAM Journal on Control and Optimization, 15, (1977)no. 5, 859-903.
[22] HK. Xu: Some random fixed point theorems for condensing and nonexpansive operators, Proc. Am. Math. Soc., 110(2) (1990), 395-400.
[23] Chi-Ming Chen ”Fixed point theorems for ψ-contractive mappings in ordered metric spaces.” Journal of Applied Mathematics 2012 (2012): 1-10. 19
[24] Cheng-Yen Li; Erdal Karapınar; Chi-Ming Chen. A Discussion on Random Meir-Keeler Contractions. Mathematics (2020), 8, 245 .
[25] Chi-Ming Chen, Zhi-Hao Xu, and Erdal Karapinar. ”Soft Fixed Point Theorems for the Soft Comparable Contractions.” Journal of Function Spaces 2021 (2021).