簡易檢索 / 詳目顯示

研究生: 李馥妤
Lee, Fu-Yu
論文名稱: 最小上界比較與最大下界比較收縮映射之隨機不動點定理
Random fixed point theorems for sup-comparable and inf-comparable contraction
指導教授: 陳啟銘
Chen, Chi-Ming
口試委員: 李俊璋
Lee, Chiun-Chang
陳中川
Chen, Chung-Chuan
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 20
中文關鍵詞: 隨機不動點收縮映射最小上界最大下界隨機不動點定理
外文關鍵詞: Random fixed point theorems, sup-comparable contraction, inf-comparable contraction, Random fixed point, contraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們探討關於在隨機度量空間中的隨機不動點,藉由最小上界比較收縮映射的函數,和最大下界比較收縮映射的函數,證明了隨機不動點的存在定理。我們的結論推廣文獻中的不動點定理。


    In this paper, we discuss about random fixed points in random metric spaces, by sup-comparable contraction map, and inf-comparable contraction map, respectively proving the existence of a random fixed point.Qur results generalize fixed point theorems in the literature.

    Contents 1 Introduction and Preliminaries..... 2 2 Rrandom fixed point theorem for the random sup-comparable contraction..... 4 3 Rrandom fixed point theorem for the random inf-comparable contraction..... 8 4 Rrandom fixed point theorem for the random strict comparable contraction..... 14

    [1] I. Beg, and N. Shahzad, An application of a random fixed point theorem to random best approximation, Arch. Math., 74 (2000), 298-301.

    [2] I. Beg, and N. Shahzad: Applications of the proximity map to random fixed point theorems in Hilbert spaces, J. Math. Anal. Appl., 196 (1995), 606-613.

    [3] AT. Bharucha-Reid: Fixed point theorems in probabilistic analysis, Bull. Am. Math. Soc., 82 (1976), 641-645.

    [4] C.-M. Chen, Fixed point theorems for the ψ-set contraction mapping on almost convex sets, Nonlinear Analysis 71 (2009) 2600–2605.

    [5] W.-S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology and Applications, 159(2012), 49–56.

    [6] O. Hans: Reduzierende zufallige Transformationen, Czechoslov. Math. J., 7 (19567), 154-158.

    [7] O. Hans, ”Random fixed point theorem,” in Proceedings of the 1st Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, Czech, (1956), 105-125.

    [8] S. Itoh, A random fixed point theorem for a multivalued contraction mapping, Pacific Journal of Mathematics, 68 (1977), no. 1, 85-90.

    [9] Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(2) (1979), 261-273.

    [10] P. Kumam: Fixed point theorem and random fixed point theorems for
    set-valued non-self-mappings, Thai J. Math., 2(2) (2004), 295-307.
    [11] TC. Lin: Random approximations and random fixed point theorems for continuous 1-set-contractive random maps, Proc. Am.Math. Soc., 123
    (1995), 1167-1176. 18

    [12] TC. Lin: Random approximations and random fixed point theorems for nonself maps, Proc. Am.Math. Soc., 103 (1988), 1129-1135.

    [13] Ns. Papageorgiou: Random fixed point theorems for measurable multifunctions in Banach spaces. Soc. Proc. Am. Math. Soc, 97 (1986), 507-514

    [14] P. Lorenzo Ramirez, Some random fixed point theorems for nonlinear mappings, Nonlinear Analysis, 50 (2002), no. 2, 265-274.

    [15] A. Spacek: Zufallige Gleichungen, Czechoslov. Math. J., (1955), no. 5, 462-446.

    [16] VM. Sehgal,C. Waters: Some random fixed point theorems for condensing operators, Proc. Am. Math. Soc., 93 (1984),425-429.
    [17] VM. Sehgal, SP. Singh: On random approximations and a random fixed point theorem for set-valued mappings, Proc. Am. Math. Soc., 95 (1985), 91-94.
    [18] K.-K. Tan and X.-Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications, (1991), no. 2, 334-345.

    [19] K.-K. Tan and X.-Z. Yuan, Random fixed point theorems and approximation, Stoch. Anal. Appl, 15 (1997), no. 2, 103-123.

    [20] K.-K. Tan and X.-Z. Yuan: Some Random fixed point theorem ”, in: K.-K.Tan (Ed), Fixed Point Theory and Applications, Wold Sciedtific, Singapro, (1992) 334-345.
    [21] D.-H.Wagner, Survey of measurable selection theorems, SIAM Journal on Control and Optimization, 15, (1977)no. 5, 859-903.

    [22] HK. Xu: Some random fixed point theorems for condensing and nonexpansive operators, Proc. Am. Math. Soc., 110(2) (1990), 395-400.

    [23] Chi-Ming Chen ”Fixed point theorems for ψ-contractive mappings in ordered metric spaces.” Journal of Applied Mathematics 2012 (2012): 1-10. 19

    [24] Cheng-Yen Li; Erdal Karapınar; Chi-Ming Chen. A Discussion on Random Meir-Keeler Contractions. Mathematics (2020), 8, 245 .

    [25] Chi-Ming Chen, Zhi-Hao Xu, and Erdal Karapinar. ”Soft Fixed Point Theorems for the Soft Comparable Contractions.” Journal of Function Spaces 2021 (2021).

    QR CODE