研究生: |
曹雅萍 Ya-Ping Tsao |
---|---|
論文名稱: |
核苷酸及蛋白質之核磁共振光譜結構研究 Solution structures of Nucleic acids and Proteins by NMR Spectroscopy |
指導教授: |
程家維博士
Dr. Jya-Wei Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 核磁共振光譜 、蛋白質 、核苷酸 、結構 |
外文關鍵詞: | DNA•RNA Hybrid,, 2'-OMe RNA, NMR, Solution structure, JEV, epitope mapping, flavivirus, E protein, Helicobacter pylori, HP0495 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文試圖以核磁共振光譜的技術,對核苷酸和蛋白質的結構進行瞭解,全文共包含以下三個部份:
第一章:經過化學修飾的反序列(antisense)核苷酸是具有發展潛力的治療藥物,而在2'羥基(hydroxyl group)上進行修飾的寡核糖核苷酸,更能提高穩定度、和RNA的親和力及提高對核苷酶的抗力,故被視為相當有前景,可抑制基因表現的抗癌藥物。本篇實驗中吾人利用二維核磁共振光譜,模擬升溫焠熄(simulated annealing)及設限分子動態模擬(restraint molecular dynamics)之分析方法,決定2'羥基以甲基化修飾的DNA/RNA嵌合雙股螺旋 [d(CGC)r(amamam)d(TTTGCG)]2 之水溶液三度空間立體結構。該結構顯示只有DNA/RNA交界處的第七胸腺嘧啶(thymine, 7T)甲基,其糖基結構為O4'-endo,其餘核苷酸包括DNA/RNA交界處的第三胞嘧啶(cytosine, 3C),其糖基結構皆如同一般DNA分子為所常見C2'-endo或C1'-exo。利用NOE光譜發現,2'羥基甲基化的第四胞嘧啶(adenine, 4am)和分子內的H1'原子的NOE訊號強度,遠小於2'羥基甲基化的第五、六胞嘧啶(adenine, 5am、6am)和分子內的H1'原子的NOE訊號強度。此結果顯示,第四胞嘧啶(adenube, 4am)的甲基採取trans的構形並朝向次溝槽(minor groove),而第五、六胞嘧啶(adenine, 5am、6am)的甲基採取gauche(+)的構形。在分子的水合現象(hydration pattern)的研究上,不同於DNA/RNA嵌合雙股螺旋 [d(CGC)r(amamam)d(TTTGCG)]2,特定的水合訊號會分別出現在次溝槽的腺嘌呤(adenine)H2及H1'原子以及主溝槽(major groove)的第七胸腺嘧啶(thymine, 7T)甲基附近,甲基化的DNA/RNA嵌合雙股螺旋 [d(CGC)r(amamam)d(TTTGCG)]2 則沒有明顯的水合訊號,可能的原因在於,2'羥基做甲基化之後,產生了一個疏水性的空間,阻止的水分子的交互作用,或者是2'羥基甲基化之後,使得螺旋結構中間部分的次溝槽之寬度變大,使得水分子無法長時間的停留。此外,在熱穩定性的測試方面,經過2'羥基甲基化後的嵌合雙股螺旋,Tm(melting tempature)可由48.5℃上升至51.9℃,符合之前的研究所示,2'羥基做甲基化確實可以提高熱穩定性。由以上的實驗可以得知,2'羥基甲基化後的嵌合雙股螺旋結構特性和水合現象特徵,此項發現將有助於DNA/RNA嵌合雙股螺旋和2'羥基上進行修飾的寡核糖核苷酸,在治療藥物上的進一步研究開發。
第二章:黃病毒屬(flavivirus)的封套蛋白(envelope protein)在其致病機制上具有相當重要的地位,舉凡與宿主細胞受器的結合,病毒本身的複製,或是酸性環境下與宿主細胞的融合皆與封套蛋白有所關聯。封套蛋白更是引出宿主細胞抗體的主要抗原,在免疫反應上更是扮演了舉足輕重的角色。本篇實驗中利用核磁共振光譜的技術,解出日本腦炎病毒封套蛋白第三區塊(domain III of Japanese encephalitis envelope protein)的水溶液三度空間立體結構。日本腦炎病毒封套蛋白第三區塊,形成了β-barrel形式的結構,包含了六個反向平行的β-strand,其結構類似於免疫球蛋白的不變區(constant region)。為了進一步找出日本腦炎病毒封套蛋白第三區塊的抗原決定位置(epitope),吾人利用了化學位移擾動(chemical Shift perturbation)的方式,發現殘基302-312,322-339,360-372 及385-392的位置有相當大的化學位移,此結果顯示β2-β3,β3-β4和β5-β6的loop區域和抗體(mAb E3.3)的結合有相當大的關聯。而後此實驗結果,經由本實驗室吳致緯同學利用單點突變(site-directed mutagenesis)配合西方墨點法(Western Blot)而得到了進一步的確認。經由本實驗所得到的日本腦炎病毒封套蛋白第三區塊的水溶液三度空間立體結構及抗原決定位置,將有助於了解免疫反應的機制,並對黃病毒屬(flavivirus)的疫苗研發提供了有價值的資訊。
第三章:幽門螺旋桿菌(Helicobacter pylori)是相當為人所熟悉的致病菌,和胃炎、消化性潰瘍等消化道的疾病,均有相當密切的關係。而在1997年幽門螺旋桿菌的基因序列已被完整解出,而在完整序列被解出之後,下一步的發展重點及在於如何利用現有的資訊,進一步對不同細胞和分子的功能進行了解。幽門螺旋桿菌的HP0495蛋白是一個86個氨基酸,分子量10193道耳吞,等電點8.7,但生物功能未知的假設性蛋白質(Hypothetical protein),經由psi-blast資料庫的搜尋分析,結果顯示僅有四筆和HP0495序列相似度較高的蛋白質出現,但此四個蛋白質亦均為生物功能未知的假設性蛋白質。本篇實驗中吾人利用旋光儀(CD)和核磁共振(NMR)光譜的技術,決定了HP0495的水溶液三度空間立體結構。HP0495的結構包括了三個β-strand和三個α-helix(排列順序βααββα),形成(α+β)的折疊方式。此外,由蛋白質交互作用結果顯示,HP0495和HP1205有很強的交互作用,而HP1205和轉譯延長因子(translation elongation factor,. EF-Tu)的序列具有高度相似,故猜測HP0495可能參與了蛋白質的合成步驟,經由本實驗所得到的HP0495的三維結構,希望將有助於對幽門螺旋桿菌有進一步的瞭解。
The thesis focuses on structural studies of nucleic acids and proteins using NMR spectroscopy. This thesis consists of three chapters:
Chapter 1 : The Solution Structure of (d(CGC)r(amamam)d(TTTGCG))2
The solution structure and hydration of a DNA•RNA hybrid chimeric duplex (d(CGC)r(amamam)d(TTTGCG))2 in which the RNA adenines were substituted by 2'-O-methylated riboadenines was determined using two-dimensional NMR, simulated annealing, and restrained molecular dynamics. Only DNA residue 7T in the 2’-OMe-RNA•DNA junction adopted an O4'-endo sugar conformation, while the other DNA residues including 3C in the DNA•2’-OMe-RNA junction, adopted C1'-exo or C2'-endo conformations. The observed NOE intensity of 2’-O-methyl group to H1’ proton of 4am at the DNA•2’-OMe-RNA junction is much weaker than those of 5am and 6am. The 2’-O-methyl group of 4am was found to orient towards the minor groove in the trans domain while the 2’-O- methyl groups of 5am and 6am were found to be in the gauche (+) domain. In contrast to the long-lived water molecules found close to the RNA adenine H2 and H1’ protons and the methyl group of 7T in the RNA-DNA junction of (d(CGC)r(aaa)d(TTTGCG))2, there were no long-lived water molecules found for (d(CGC)r(amamam)d(TTTGCG))2. This is probably due to the hydrophobic enviroment created by the 2’-O-methylated riboadenines in the minor groove. Comparing with (d(CGC)r(aaa)d(TTTGCG))2, the melting temperature of (d(CGC)r(amamam)d(TTTGCG))2 increases from 48.5□C to 51.9□C. Since no long-lived water molecules were found close to the 2’-O-methylated RNA adenine H2 and H1’ protons in the hybrid segment and in the methyl group of 7T in the RNA-DNA junction, the increase of melting temperature may be solely due to the hydrophobic interactions between substituents in the minor groove. The characteristic structural features and hydration patterns of this chimeric duplex provide a molecular basis for further therapeutic applications of DNA•RNA hybrid and chimeric duplexes with 2’-modified RNA residues.
Chapter 2 : Solution Structure of the Domain III of the Japanese Encephalitis Virus Envelope Protein
The flavivirus envelope protein is the dominant antigen in eliciting neutralizing antibodies and plays an important role in inducing immunologic responses in the infected host. We have determined the solution structure of the major antigenic domain (domain III) of the Japanese Encephalitis Virus (JEV) envelope protein. The JEV domain III forms a β-barrel type structure composed of six antiparallel β-strands resembling the immunoglobulin constant domain. We have also identified epitopes of the JEV domain III to its neutralizing antibody by chemical shift perturbation measurements. The NMR result was also confirmed by site-directed mutagenesis experiments and western blot analysis (performed by Chih-Wei Wu). Our study provides a structural basis for understanding the mechanism of immunologic protection and for rational design of vaccines effective against flaviviruses.
Chapter 3 : Solution Structure of the Hypothetical Protein HP0495 from Helicobacter Pylori
Helicobacter pylori known as gastric pathogenic bacteria are able to cause digestive illnesses including gastritis and peptic ulcer disease. Their genomes have been completely sequenced. The next step of genomic studies after the yielding of the complete genome sequence of the species is to identify both cellular and molecular function of each gene in the genome.
The HP0495 gene of H. pylori encodes a hypothetical protein of 86 amino acid residues with a molecular weight of 10,193 Da and a calculated isoelectric point of 8.7. HP0495 has four similar sequences referred to as “hypothetical protein” by PSI-BLAST analysis and no identifiable sequence homology to well-characterized proteins. In our present studies, structural studies of HP0495 were carried out using CD and NMR. Solution structure analysis revealed that the overall fold of this protein consists of three β strands and three □ helices. The HP0495 is classified as typical “□ and β (□ + β)” fold, arranged in a□β□□□□□β□β□□□topology□□□□Moreover, the protein-protein interaction map of the H. pylori showed that HP0495 interacts strongly with HP1205. Since HP1205 is strongly similar to translation elongation factor EF-Tu, HP0495 may be involved in the protein synthesis. Knowledge of the structure of H. pylori protein will help the proteomic studies of the roles of H. pylori in human diseases.
References 1
1. Ban, C., Ramakrishnan, B., and Sundaralingam, M. (1994) J Mol Biol 236, 275-285
2. Chou, S. H., Flynn, P., and Reid, B. (1989) Biochemistry 28, 2435-2443
3. Gonzalez, C., Stec, W., Kobylanska, A., Hogrefe, R. I., Reynolds, M., and James, T. L. (1994) Biochemistry 33, 11062-11072
4. Gyi, J. I., Lane, A. N., Conn, G. L., and Brown, T. (1998) Biochemistry 37, 73-80
5. Hall, K. B., and McLaughlin, L. W. (1991) Biochemistry 30, 10606-10613
6. Hashem, G. M., Pham, L., Vaughan, M. R., and Gray, D. M. (1998) Biochemistry 37, 61-72
7. Jaishree, T. N., van der Marel, G. A., van Boom, J. H., and Wang, A. H. (1993) Biochemistry 32, 4903-4911
8. Nishizaki, T., Iwai, S., Ohkubo, T., Kojima, C., Nakamura, H., Kyogoku, Y., and Ohtsuka, E. (1996) Biochemistry 35, 4016-4025
9. Ratmeyer, L., Vinayak, R., Zhong, Y. Y., Zon, G., and Wilson, W. D. (1994) Biochemistry 33, 5298-5304
10. Rice, J. S., and Gao, X. (1997) Biochemistry 36, 399-411
11. Wang, A. H., Fujii, S., van Boom, J. H., van der Marel, G. A., van Boeckel, S. A., and Rich, A. (1982) Nature 299, 601-604
12. Nishizaki, T., Iwai, S., Ohtsuka, E., and Nakamura, H. (1997) Biochemistry 36, 2577-2585
13. Tereshko, V., Portmann, S., Tay, E. C., Martin, P., Natt, F., Altmann, K. H., and Egli, M. (1998) Biochemistry 37, 10626-10634
14. Egli, M., and Gryaznov, S. M. (2000) Cell Mol Life Sci 57, 1440-1456
15. Lubini, P., Zurcher, W., and Egli, M. (1994) Chem Biol 1, 39-45
16. Blommers, M. J., Pieles, U., and De Mesmaeker, A. (1994) Nucleic Acids Res 22, 4187-4194
17. Salazar, M., Fedoroff, O. Y., Miller, J. M., Ribeiro, N. S., and Reid, B. R. (1993) Biochemistry 32, 4207-4215
18. Gonzalez, C., Stec, W., Reynolds, M. A., and James, T. L. (1995) Biochemistry 34, 4969-4982
19. Fedoroff, O., Salazar, M., and Reid, B. R. (1993) J Mol Biol 233, 509-523
20. Hsu, S. T., Chou, M. T., and Cheng, J. W. (2000) Nucleic Acids Res 28, 1322-1331
21. Hsu, S. T., Chou, M. T., Chou, S. H., Huang, W. C., and Cheng, J. W. (2000) J Mol Biol 295, 1129-1137
22. Edwards, K. J., Brown, D. G., Spink, N., Skelly, J. V., and Neidle, S. (1992) J Mol Biol 226, 1161-1173
23. Conte, M. R., Conn, G. L., Brown, T., and Lane, A. N. (1997) Nucleic Acids Res 25, 2627-2634
24. Gudima, S. O., Kazantseva, E. G., Kostyuk, D. A., Shchaveleva, I. L., Grishchenko, O. I., Memelova, L. V., and Kochetkov, S. N. (1997) Nucleic Acids Res 25, 4614-4618
25. Hogrefe, H. H., Hogrefe, R. I., Walder, R. Y., and Walder, J. A. (1990) J Biol Chem 265, 5561-5566
26. Szyperski, T., Gotte, M., Billeter, M., Perola, E., Cellai, L., Heumann, H., and Wuthrich, K. (1999) J Biomol NMR 13, 343-355
27. Piotto, M., Saudek, V., and Sklenar, V. (1992) J Biomol NMR 2, 661-665
28. Wang, A. C., Kim, S. G., Flynn, P. F., Chou, S. H., Orban, J., and Reid, B. R. (1992) Biochemistry 31, 3940-3946
29. Noggle, J. H. a. S., R. E. (1971) The Nuclear Overhauser Effect., Academic Press.
30. Cheng, J. W., Chou, S. H., Salazar, M., and Reid, B. R. (1992) J Mol Biol 228, 118-137
31. Kim, S. G., Lin, L. J., and Reid, B. R. (1992) Biochemistry 31, 3564-3574
32. Salazar, M., Champoux, J. J., and Reid, B. R. (1993) Biochemistry 32, 739-744
33. Fedoroff, O., Salazar, M., and Reid, B. R. (1996) Biochemistry 35, 11070-11080
34. Zhu, L., Salazar, M., and Reid, B. R. (1995) Biochemistry 34, 2372-2380
35. Salazar, M., Fedoroff, O., Zhu, L., and Reid, B. R. (1994) J Mol Biol 241, 440-455
36. Salazar, M., Fedoroff, O. Y., and Reid, B. R. (1996) Biochemistry 35, 8126-8135
37. Yip, P., and Case, D. A. (1989) Journal of Magnetic Resonance 83, 643-648
38. Nilges, M., Habazettl, J., Brunger, A. T., and Holak, T. A. (1991) J Mol Biol 219, 499-510
39. White, S. A., Nilges, M., Huang, A., Brunger, A. T., and Moore, P. B. (1992) Biochemistry 31, 1610-1621
40. Lavery, R., and Sklenar, H. (1989) J Biomol Struct Dyn 6, 655-667
41. Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., and Reid, B. R. (1983) J Mol Biol 171, 319-336
42. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley & Sons, New York, USA.
43. Lane, A. N., Jenkins, T. C., and Frenkiel, T. A. (1997) Biochim Biophys Acta 1350, 205-220
44. Otting, G., Liepinsh, E., and Wuthrich, K. (1991) Science 254, 974-980
45. Conte, M. R., Conn, G. L., Brown, T., and Lane, A. N. (1996) Nucleic Acids Res 24, 3693-3699
46. Kawai, G., Yamamoto, Y., Kamimura, T., Masegi, T., Sekine, M., Hata, T., Iimori, T., Watanabe, T., Miyazawa, T., and Yokoyama, S. (1992) Biochemistry 31, 1040-1046
47. Teplova, M., Minasov, G., Tereshko, V., Inamati, G. B., Cook, P. D., Manoharan, M., and Egli, M. (1999) Nat Struct Biol 6, 535-539
References 2
1. Burke, D. S., and Monath, T. P. (2001) Fields Virology 4th edn. (edn., t., Ed.), Lippincott Williams & Wilkins, Philadelphia, PA
2. Chambers, T. J., Hahn, C. S., Galler, R., and Rice, C. M. (1990) Annu Rev Microbiol 44, 649-688
3. McMinn, P. C. (1997) J Gen Virol 78 ( Pt 11), 2711-2722
4. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995) Nature 375, 291-298
5. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S., and Strauss, J. H. (2002) Cell 108, 717-725
6. Cecilia, D., and Gould, E. A. (1991) Virology 181, 70-77
7. Seif, S. A., Morita, K., Matsuo, S., Hasebe, F., and Igarashi, A. (1995) Vaccine 13, 1515-1521
8. Wu, S. C., Lian, W. C., Hsu, L. C., and Liau, M. Y. (1997) Virus Res 51, 173-181
9. Lin, C. W., and Wu, S. C. (2003) J Virol 77, 2600-2606
10. Jiang, W. R., Lowe, A., Higgs, S., Reid, H., and Gould, E. A. (1993) J Gen Virol 74 ( Pt 5), 931-935
11. Holzmann, H., Heinz, F. X., Mandl, C. W., Guirakhoo, F., and Kunz, C. (1990) J Virol 64, 5156-5159
12. Holzmann, H., Stiasny, K., Ecker, M., Kunz, C., and Heinz, F. X. (1997) J Gen Virol 78 ( Pt 1), 31-37
13. Schlesinger, J. J., Chapman, S., Nestorowicz, A., Rice, C. M., Ginocchio, T. E., and Chambers, T. J. (1996) J Gen Virol 77 ( Pt 6), 1277-1285
14. Lin, B., Parrish, C. R., Murray, J. M., and Wright, P. J. (1994) Virology 202, 885-890
15. Hiramatsu, K., Tadano, M., Men, R., and Lai, C. J. (1996) Virology 224, 437-445
16. Roehrig, J. T., Bolin, R. A., and Kelly, R. G. (1998) Virology 246, 317-328
17. Wu, S. C., and Lin, C. W. (2001) Virus Res 76, 59-69
18. Leiting, B., Marsilio, F., and O'Connell, J. F. (1998) Anal Biochem 265, 351-355
19. Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L., and Sykes, B. D. (1995) J Biomol NMR 6, 135-140
20. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) J Biomol NMR 12, 1-23
21. Ferentz, A. E., and Wagner, G. (2000) Q Rev Biophys 33, 29-65
22. Abragam, A. (1961) The principles of nuclear magnetism. The International series of monographs on physics, Clarendon Press, Oxford
23. Yukio Hiyama, C. H. N., James V. Silverton, Alfonso Bavoso, and Dennis A. Torchia. (1988) Journal of the American Chemical Society 110, 1378-2383
24. Peng JW, W. G. (1992) Biochemistry 31, 8571-8586
25. Chang CF, C. H., Chuang JL, Chuang DT, Huang TH. (2002) J Biol Chem 277, 15865-15873
26. Farrow NA, Z. O., Szabo A, Torchia DA, Kay LE. (1995) J Biomol NMR 6, 153-162
27. Bracken C, C. P., Cavanagh J, Palmer AG 3rd. (1999) J Mol Biol 285, 2133-2146
28. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J Biomol NMR 13, 289-302
29. Brunger, A. T. (1993) X-PLOR Version 3.1: A system for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT
30. Koradi, R., Billeter, M., and Wuthrich, K. (1996) J Mol Graph 14, 51-55, 29-32
31. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) J Biomol NMR 8, 477-486
32. Wishart, D. S., and Sykes, B. D. (1994) J Biomol NMR 4, 171-180
33. Wishart DS, B. C., Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD. (1995) Journal of Biomolecular NMR 6, 135-140
34. Lefevre, J. F., Dayie, K. T., Peng, J. W., and Wagner, G. (1996) Biochemistry 35, 2674-2686
35. Farrow, N. A., Zhang, O., Szabo, A., Torchia, D. A., and Kay, L. E. (1995) J Biomol NMR 6, 153-162
36. Tashiro, M., and Montelione, G. T. (1995) Curr Opin Struct Biol 5, 471-481
37. Saito, N. G., and Paterson, Y. (1996) Methods 9, 516-524
38. Huang, X., Yang, X., Luft, B. J., and Koide, S. (1998) J Mol Biol 281, 61-67
39. Ding, W., Huang, X., Yang, X., Dunn, J. J., Luft, B. J., Koide, S., and Lawson, C. L. (2000) J Mol Biol 302, 1153-1164
40. Markus, M. A., Dayie, K. T., Matsudaira, P., and Wagner, G. (1994) J Magn Reson B 105, 192-195
41. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Proc Natl Acad Sci U S A 94, 12366-12371
42. Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) Nature 418, 207-211
Reference 3
1. Iliopoulos, I., Tsoka, S., Andrade, M. A., Janssen, P., Audit, B., Tramontano, A., Valencia, A., Leroy, C., Sander, C., and Ouzounis, C. A. (2001) Genome Biol 2, INTERACTIONS0001
2. Suerbaum, S., and Achtman, M. (2004) Int J Med Microbiol 294, 133-139
3. Thomsen, L. L., Gavin, J. B., and Tasman-Jones, C. (1990) Gut 31, 1230-1236
4. McGowan, C. C., Cover, T. L., and Blaser, M. J. (1996) Gastroenterology 110, 926-938
5. Bijlsma, J. J., Gerrits, M. M., Imamdi, R., Vandenbroucke-Grauls, C. M., and Kusters, J. G. (1998) FEMS Microbiol Lett 167, 309-313
6. Marshall, B. J., and Warren, J. R. (1983) Lancet 1, 1273-1275
7. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M., and Venter, J. C. (1997) Nature 388, 539-547
8. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., and Trust, T. J. (1999) Nature 397, 176-180
9. Boneca, I. G., de Reuse, H., Epinat, J. C., Pupin, M., Labigne, A., and Moszer, I. (2003) Nucleic Acids Res 31, 1704-1714
10. Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., and Legrain, P. (2001) Nature 409, 211-215
11. Kamal, J. K., and Behere, D. V. (2002) Biochemistry 41, 9034-9042
12. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) J Mol Biol 280, 933-952
13. Wishart, D. S., Bigam, C. G., Yao, J., Abildgaard, F., Dyson, H. J., Oldfield, E., Markley, J. L., and Sykes, B. D. (1995) J Biomol NMR 6, 135-140
14. Ferentz, A. E., and Wagner, G. (2000) Q Rev Biophys 33, 29-65
15. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) J Biomol NMR 6, 277-293
16. Johnson, B. A., and Blevins, R. A. (1994) J. Biomol. NMR 4, 603 - 614
17. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J Biomol NMR 13, 289-302
18. Brunger, A. T. (1993) X-PLOR Version 3.1: A system for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT
19. Koradi, R., Billeter, M., and Wuthrich, K. (1996) J Mol Graph 14, 51-55, 29-32
20. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) J Biomol NMR 8, 477-486
21. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J Mol Biol 215, 403-410
22. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res 22, 4673-4680
23. Creighton, T. E. (1993) Proteins: Structures and molecular properties 2nd ed., W.H. Freeman, New York
24. Wuthrich, K. (1986) NMR of protein and Nucleic acid, John Wiley and Sons. Inc.
25. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) Biochemistry 31, 1647-1651