簡易檢索 / 詳目顯示

研究生: 陳世偉
Chen, Shih-Wei
論文名稱: 氧化鋅奈米柱及鐵酸鉍包覆氧化鋅奈米柱殼/核結構成長機制及特性研究
Growth mechanisms and characteristics of ZnO nanorod arrays and BiFeO3 covered-ZnO nanorod arrays core/shell hetero-structures
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 甘炯耀
李奕賢
葉東昇
徐錦志
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 261
中文關鍵詞: 氧化鋅鐵酸鉍奈米柱殼核結構鐵電
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過水熱法製程,我們在ZnO/Si基板製備一系列不同密度及垂直性之氧化鋅奈米柱體。並透過氧化鋅種子層的變化探討其對氧化鋅奈米柱之成長機制。實驗結果顯示,氧化鋅種子層之晶粒大小及表面粗糙度對後續氧化鋅柱體之密度及垂直性有明顯的影響。當氧化鋅種子層表面具有較大晶粒及較大的粗糙度時,成核的機制由晶界成核轉為表面成核。晶界成核導致氧化鋅奈米柱呈現高密度但較差垂直基板特性,表面成核之氧化鋅奈米則呈現較低之柱體密度但具有較佳的垂直基板特性。
    實驗中我們透過導電式原子力顯微鏡對單根的氧化鋅奈米柱進行電流電壓(I-V)之量測,量測之I-V結果呈現一非線性且非對稱之圖形。此明顯整流特性的奈米級蕭基二極體,且比起一般文獻值(2 V~4 V)呈現一極大的崩潰電壓(> 10 V)。另外,實驗中我們可以觀察到有一明顯的電流遲滯現象,且此現象的產生與柱體表面產生的化學吸附及脫附現象的產生有關。
    透過上述所製備之氧化鋅奈米柱,我們製備一包覆在氧化鋅奈米柱的鐵酸鉍(BFO)奈米結構,並探討其合成、表面形貌及磁性。實驗製程中,BFO的包覆是透過室溫下的鍍製後並於氧氣氛下退火以產生BFO結晶, 450℃的熱處理後開始產生BFO的結晶。透過掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)的檢測,證明BFO包覆在氧化鋅奈米柱上且呈現一多晶之特性。磁性的量測上,BFO/ZNA的異質結構在5 K 及 300 K下呈現一鐵磁矩,矯頑場及保核磁化量明顯的與薄膜特性不同。除此之外,在我們的研究中,X光繞射及SEM的結果顯示BFO的鈣鈦礦結構明顯的比起具有(0002)優選方向的氧化鋅薄膜更容易在ZNA上成長及結晶。BFO與氧化鋅間較大的晶格常數差異導致較差的附著性,使得在濺鍍時Bi3+ 轉變為金屬Bi,且被電將轟擊脫落無法形成BFO層。基於上述的理由,為了成功的使BFO附著於ZNA上,我們透過兩段式鍍製方法,即室溫鍍製後再進行後續的退火以形成BFO結晶。實驗證據顯示,ZNA具有的{101 ̅0}面比起(0002)面更適合BFO的成長。透過高解析穿透式電子顯微鏡(HRTEM)之觀察,發現ZnO之{101 ̅0}面具有崎嶇的表面結構,能有效的幫助BFO成長與結晶。另外,透過LNO緩衝層也能成功的在ZNA上製備與成長出BFO。透過C-AFM及壓電式原子力顯微鏡(PFM)之檢測,顯示BFO/ZNA及BFO/LNO/ZNA異質結構皆呈現二極體特性且有壓電訊號的產生。


    第一章、 簡介………………………………………………………………………..1 1-1、 前言………………………………………………………………..1 1-2、 實驗動機…………………………………………………………..3 第二章、 文獻回顧…………………………………………………………………..5 (一)氧化鋅奈米柱體 2-1、氧化鋅晶體結構…………………………………………………5 2-2、氧化鋅奈米結構成長製程……………………………………….7 2-2-1、固液氣法(VLS) …………………………………………7 2-2-2、熱蒸鍍法………………………………………………..8 2-2-3、有機金屬化學氣相沉積法(MOCVD) ………………….8 2-2-4、脈衝雷射沉積法(PLD) …………………………………9 2-2-5、水熱法(hydrothermal) …………………………………..9 2-2-6、模板法………………………………………………….10 2-3、氧化鋅奈米柱成長機制………………………………………...21 2-4、氧化鋅奈米柱之應用…………………………………………...37 2-4-1、光電上應用…………………………………………….37 2-4-2、壓電材料……………………………………………….37 2-4-3、場發特性……………………………………………….38 2-4-4、感測器………………………………………………….38 2-4-5、太陽能電池…………………………………………….39 (二)鐵酸鉍鈣鈦礦結構 2-5、鐵酸鉍(BFO)特性……………………………………………..47 2-5-1、晶體結構與性質……………………………………….47 2-5-2、鐵電特性(Ferroelectrics) ………………………………47 2-5-3、電阻轉換特性(ReRRAM) …………………………….49 2-5-4、壓電特性(Piezoelectrics) ……………………………...50 2-5-5、光伏特性(Photovoltaic) ……………………………….51 2-6、奈米材料製備………………………………………………….55 2-6-1、合成法(水熱法-hydrothermal) ………………………...55 2-6-2、模板法……………………………………………….....56 2-6-2-1、負向模板法…………………………………..56 2-6-2-2、正向模板法…………………………………..57 第三章、 實驗方法 (一) 氧化鋅奈米柱體 3-1、實驗流程圖…………………………………………………….68 3-2、氧化鋅種子層之製備………………………………………….68 3-3、氧化鋅奈米柱之製備………………………………………….68 3-4、單根氧鋅奈米柱電性量測元件製備…………..……………..69 3-5、實驗儀器…………………………….. ………………………..69 (二) 鐵酸鉍鈣鈦礦結構 3-6、實驗流程圖…………………………………………………….76 3-7、氧化鋅奈米柱之製備…………………………………………76 3-8、BFO包覆……………………………………………………....77 3-9、BFO/ZNA及BFO/LNO/ZNA電性量測元件製備………….77 3-10、實驗儀器……………………………………………………...78 第四章、 結果與討論…………………………….. ……………………………….84 (一) 氧化鋅奈米柱體研究 4-1、氧化鋅柱體成長條件控制……….. …………………………..84 4-2、氧化鋅種子層檢測……………….. …………………………..97 4-3、氧化鋅奈米柱檢測…………….. ……………………………109 4-4、氧化鋅奈米柱成長機制……….. ……………………………126 4-5、氧化鋅奈米柱CL特性……….. …………………………….131 4-6、氧化鋅奈米柱電性研究…….. ………………………………133 (二) 一維鐵酸鉍鈣鈦礦結構研究 4-7、BFO奈米結構製備方法測試……………………………….147 4-7-1、水熱包覆法…………………………………………...147 4-7-2、AAO及sol-gel填充法………………………………..148 4-7-3、CSD包覆法……………………………………..…….148 4-7-4、磁控濺鍍包覆法…………………………….………..149 4-8、鍍製條件之影響……………………………………..………158 4-8-1、鍍製溫度之影響……………………………...………158 4-8-2、靶材化學劑量比之影響…………………..…………159 4-8-3、兩階段製備法………………………………...………160 4-8-4、氧化鋅奈米柱長度之影響………………..…………164 4-8-5、退火時間之影響……………………………...………165 4-8-6、BFO鍍製時間之影響……………………..…………165 4-8-7、鎳酸鑭(LaNiO3, LNO)緩衝層之影響…………..……165 4-9、利用磁控濺鍍法鍍製BFO於氧化鋅薄膜/柱體之成長機 制……………………………………………………………..196 4-10、BFO/ZNA結構之磁性研究……………………….………..200 4-11、BFO/ZNA結構之表面化學特性…………………….……..202 4-12、BFO/LNO/ZNA結構之光學特性…………….…………….208 4-13、BFO/ZNA及BFO/LNO/ZNA結構之電性研究………...….212 4-13-1、BFO/ZNA結構………………………………………212 4-13-2、BFO/LNO/ZNA結構…………………………..……214 4-14、BFO/ZNA及BFO/LNO/ZNA結構之壓電特性研究…..…..218 4-14-1、柱體分散及固定方法研究……………….…………218 4-14-2、BFO/ZNA及BFO/LNO/ZNA奈米柱體之壓電 特性…………………………………………………220 第五章、 結論…….. ……………………………………………………………...225 第六章、 參考文獻…….. ………………………………………………………...228

    1. Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Zapien, J. A.; Leung, Y. H.; Luo, L. B.;
    Wang, P. F.; Lee, C. S.; Lee, S. T., p-type ZnO nanowire arrays. Nano Lett. 2008, 8,
    2591.
    2. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 2004,16, R829.
    3. Gao, P. X.; Wang, Z. L., Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 2004, 108, 7534.
    4. Wagner, R. S.; Ellis, W. C., Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89.
    5. Wang, X. D.; Song, J. H.; Summers, C. J.; Ryou, J. H.; Li, P.; Dupuis, R. D.; Wang, Z. L., Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B 2006, 110, 7720.
    6. Park, W. I.; Yi, G. C.; Kim, M. Y.; Pennycook, S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841.
    7. Li, C.; Fang, G. J.; Fu, Q.; Su, F. H.; Li, G. H.; Wu, X. G.; Zhao, X. Z., Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. J. Cryst. Growth 2006, 292, 19.
    8. Wu, J. J.; Liu, S. C., Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 2002, 14, 215.
    9. Lui, y.; Gorla, C. R.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H. Wraback, M., Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD. J. Electron. Mater. 2000, 29, 69.
    10. Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Perez, J.
    Z.;Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20,1
    11. Lorenz, M.; Kaidashev, E. M.; Rahm, A.; Nobis, T.; Wagner, J.; Spemann, D.;
    Hochmuth, H.; Grundmann, M., MgxZn1−xO (0<x <0.2) nanowire arrays on
    sapphire grown by high-pressure pulsed-laser deposition. Appl. Phys. Lett. 2005,
    86, 143113-1.
    12. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous
    solutions. Adv. Mater. 2003, 15, 464.
    13. Sun, Y.; Riley, D. J.; Ashfold, M. N. R., Mechanism of ZnO nanotube growth by
    hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 2006,
    110, 15186.
    14. Zhang, H.; Yang, D.; Ma, X. Y.; Ji, Y. J.; Xu, J.; Que, D. L., Synthesis of
    flower-likeZnO nanostructures by an organic-free hydrothermal process.
    Nanotechnology 2004, 15, 622.
    15. Le, H. Q.; Chua, S. J.; Koh, Y. W.; Loh, K. P.; Fitzgerald, E. A., Systematic studies
    of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal
    synthesis. J. Cryst. Growth 2006, 293, 36.
    16. Musselman, K. P.; Mulholland, G. J.; Robinson, A. P.; Schmidt-Mende, L.;
    MacManus-Driscoll, J. L., Low-Temperature Synthesis of Large-Area,
    Free-Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates. Adv.
    Mater. 2008, 20, 4470.
    17. Chang, S. Y.; Yang, N. H.; Huang, Y. C., Hydrothermal Growth and Interface
    Correlation of Highly Aligned ZnO Nanorod Arrays on UV-Activated Sol-Gel
    Transparent Conducting Films. J. Electrochem. Soc. 2009, 156, K200.
    18. Ghoshal, T.; Biswas, S.; Kar, S.; Dev, A.; Chakrabarti, S.; Chaudhuri, S., Direct
    synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation
    process. Nanotechnology 2008, 19.1.
    19. Zhao, X. Q.; Kim, C. R.; Lee, J. Y.; Heo, J. H.; Shin, C. M.; Ryu, H.; Chang, J. H.;
    Lee, H. C.; Son, C. S.; Lee, W. J.; Jung, W. G.; Tan, S. T.; Zhao, J. L.; Sun, X. W.,
    Effects of buffer layer annealing temperature on the structural and optical
    properties of hydrothermal grown ZnO. Appl. Surf. Sci. 2009, 255, 4461.
    20. Yang, L. L.; Zhao, Q. X.; Willander, M.; Yang, J. H., Effective way to control the
    size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition. J.
    Cryst. Growth 2009, 311, 1046.
    21. Qiu, J. J.; Li, X. M.; He, W. Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.;
    Kim, Y. D., The growth mechanism and optical properties of ultralong ZnO
    nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Nanotechnology 2009, 20,155603.
    22. Chow, L.; Lupan, O.; Heinrich, H.; Chai, G., Self-assembly of densely packed and
    aligned bilayer ZnO nanorod arrays. Appl. Phys. Lett. 2009, 94,163105-1.
    23. Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R.; Bao, G.; Wang, Z. L.,
    Piezoelectric-Potential-Control led Polarity-Reversible Schottky Diodes and
    Switches of ZnO Wires. Nano Lett. 2008, 8, 3973.
    24. Wang, S. F.; Tseng, T. Y.; Wang, Y. R.; Wang, C. Y.; Lu, H. C.; Shih, W. L., Effects
    of preparation conditions on the growth of ZnO nanorod arrays using aqueous
    solution method. Int. J. Appl. Ceram. Technol. 2008, 5, 419.
    25. Liu, J. Z.; Lee, S.; Ahn, Y.; Park, J. Y.; Kim, Y. S.; Koh, K. H.; Lee, K. M.; Park, K.
    H., Catalyst-free growth and optical properties of vertically aligned ZnO nanoro
    arrays on Si substrates covered with thin buffer layers. J. Korean Phys. Soc. 2008,
    53, 141.
    26. Li, Z. K.; Huang, X. T.; Liu, J. P.; Li, Y. Y.; Li, G. Y., Morphology control and
    transition of ZnO nanorod arrays by a simple hydrothermal method. Mater. Lett.
    2008, 62, 1503.
    27. Gao, Y. J.; Zhang, W. C.; Wu, X. L.; Xia, Y.; Huang, G. S.; Xu, L. L.; Shen, J. C.;
    Siu, G. G.; Chu, P. K., Hydrothermal self-assembling of ZnO nanorods into
    sphere-like superstructures and their optical characteristics. Appl. Surf. Sci. 2008,
    255, 1982.
    28. Chung, T. F.; Zapien, J. A.; Lee, S. T., Luminescent properties of ZnO nanorod
    Arrays grown on Al : ZnO buffer layer. J. Phys. Chem. C 2008, 112, 820.
    29. Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D., Density-controlled
    hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007,
    18, 035605.
    30. Wang, M.; Ye, C. H.; Zhang, Y.; Hua, G. M.; Wang, H. X.; Kong, M. G.; Zhang, L.
    D., Synthesis of well-aligned ZnO nanorod arrays with high optical property via a
    low-temperature solution method. J. Cryst. Growth 2006, 291, 334.
    31. Park, S. H.; Seo, S. Y.; Kim, S. H.; Han, S. W., Surface roughness and strain effects
    on ZnO nanorod growth. Appl. Phys. Lett. 2006, 88, 251903-1.
    32. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M., Hydrothermal
    growth of large-scale micropatterned arrays of ultralong ZnO nanowires and
    nanobelts on zinc substrate. Chem. Commun. 2006, 3551.
    33. Ge, J. C.; Tang, B.; Zhuo, L. H.; Shi, Z. Q., A rapid hydrothermal route to sisal-like
    3D ZnO nanostructures via the assembly of CTA+ and Zn(OH)42-: growth
    mechanism and photoluminescence properties. Nanotechnology 2006, 17, 1316.
    34. Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R., Synthesis of
    aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO
    film. Adv. Mater. 2005, 17, 2477.
    35. Liou, S. C.; Hsiao, C. S.; Chen, S. Y., Growth behavior and microstructure
    evolution of ZnO nanorods grown on Si in aqueous solution. J. Cryst. Growth
    2005, 274, 438.
    36. Lin, C. C.; Chen, S. Y.; Cheng, S. Y., Nucleation and growth behavior of
    well-aligned ZnO nanorods on organic substrates in aqueous solutions. J. Cryst.
    Growth 2005, 283, 141.
    37. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.;
    Yang, P. D., General route to vertical ZnO nanowire arrays using textured ZnO
    seeds. Nano Lett. 2005, 5, 1231.
    38. Zhang, H. Z.; Sun, X. C.; Wang, R. M.; Yu, D. P., Growth and formation
    mechanism of c-oriented ZnO nanorod arrays deposited on glass. J. Cryst. Growth
    2004, 269, 464.
    39. Henley, S. J.; Ashfold, M. N. R.; Nicholls, D. P.; Wheatley, P.; Cherns, D.,
    Controlling the size and alignment of ZnO microrods using ZnO thin film templates
    deposited by pulsed laser ablation. Appl. Phys. A-Mater. Sci. Process. 2004, 79,
    1169.
    40. Ng, H. T.; Li, J.; Smith, M. K.; Nguyen, P.; Cassell, A.; Han, J.; Meyyappan, M.,
    Growth of epitaxial nanowires at the junctions of nanowalls. Science 2003, 300,
    1249.
    41. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W., Soft
    solution route to directionally grown ZnO nanorod arrays on Si wafer;
    room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911.
    42. Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W., Growth mechanism and growth
    habit of oxide crystals. J. Cryst. Growth 1999, 203, 186.
    43. Na, S. H.; Park, C. H., First-Principles Study of the Surface Energy and the Atom
    Cohesion of Wurtzite ZnO and ZnS - Implications for Nanostructure Formation. J.
    Korean Phys. Soc., 2010. 56, 498.
    44. Yue, S. S.; Lu, J. J.; Zhang, J. Y., Controlled growth of well-aligned hierarchical
    ZnO arrays by a wet chemical method. Mater. Lett. 2009, 63, 2149.
    45. Wang, S. F. T., T. Y. Wang, Y. R. Wang, C. Y. Lu, H. C., Effect of ZnO seed layers
    on the solution chemical growth of ZnO nanorod arrays. Ceram. Int. 2009, 35,
    1255.
    46. Ma, T.; Guo, M.; Zhang, M.; Wang, X. D., The Effect of the Texture and the
    Density of ZnO Seed Layer on the Orientation of ZnO Nanorod Arrays. J. Nanosci.
    Nanotechnol. 2009, 9, 5920.
    47. Lee, C. Y.; Wang, J. Y.; Chou, Y.; Cheng, C. L.; Chao, C. H.; Shiu, S. C.; Hung, S.
    C.; Chao, J. J.; Liu, M. Y.; Su, W. F.; Chen, Y. F.; Lin, C. F., White-light
    electroluminescence from ZnO nanorods/polyfluorene by solution-based growth.
    Nanotechnology 2009, 20,425202 .
    48. Yan, C. L.; Xue, D. F., Solution growth of nano- to microscopic ZnO on Zn. J.
    Cryst. Growth 2008, 310, 1836.
    49. Huang, J. S.; Lin, C. F., Influences of ZnO sol-gel thin film characteristics on ZnO
    nanowire arrays prepared at low temperature using all solution-based processing. J.
    Appl. Phys. 2008, 103, 014304.
    50. Li, C.; Fang, Fang, G., Li, J.; Ai, L.; Dong, g.; Zhao, X., Effect of Seed Layer on
    Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport. J.
    Phys. Chem. C 2008,112, 990.
    51. Lee, Y. J.; Sounart, T. L.; Scrymgeour, D. A.; Voigt, J. A.; Hsu, J. W. P., Control of
    ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst.
    Growth 2007, 304, 80.
    52. Gao, P. X.; Liu, J.; Buchine, B. A.; Weintraub, B.; Wang, Z. L.; Lee, J. L., Bridged
    ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 2007, 91, 142104.
    53. Zhao, J.; Jin, Z. G.; Liu, X. X.; Liu, Z. F., Growth and morphology of ZnO
    nanorods prepared from Zn(NO3)2/NaOH solutions. J. Eur. Ceram. Soc. 2006, 26,
    3745.
    54. Zhao, J.; Jin, Z. G.; Li, T.; Liu, X. X., Nucleation and growth of ZnO nanorods on
    the ZnO-coated seed surface by solution chemical method. J. Eur. Ceram. 2006, 26,
    2769.
    55. Liu, X. X.; Jin, Z. G.; Bu, S. J.; Zhao, J.; Yu, K., Preparation of ZnO nanorods and
    special lath-like crystals by aqueous chemical growth (ACG) method. Mater. Sci.
    Eng., B 2006, 129, 139.
    56. Liu, X. X.; Jin, Z. G.; Bu, S. J.; Zhao, J.; Liu, Z. F., Growth of ZnO films with
    controlled morphology by aqueous solution method. J. Am. Ceram. Soc. 2006, 89,
    1226.
    57. Song, J.; Lim, S., Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys.
    Chem. C 2006, 111, 596.
    58. Kong, B. H.; Cho, H. K., Formation of vertically aligned ZnO nanorods on ZnO
    templates with the preferred orientation through thermal evaporation. J. Cryst.
    Growth 2006, 289, 370.
    59. Park, J. Y.; Yun, Y. S.; Hong, Y. S.; Oh, H.; Kim, J. J.; Kim, S. S., Synthesis,
    electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO
    nanorods on GaN-buffered sapphire substrates. Appl. Phys. Lett. 2005, 87, 123108.
    60. Li, Q. C.; Kumar, V.; Li, Y.; Zhang, H. T.; Marks, T. J.; Chang, R. P. H., Fabrication
    of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mat. 2005, 17, 1001.
    61. Guo, M.; Diao, P.; Cai, S. M., Hydrothermal growth of well-aligned ZnO nanorod
    arrays: Dependence of morphology and alignment ordering upon preparing
    conditions. J. Solid State Chem. 2005, 178, 1864.
    62. Cong, G. W.; Wei, H. Y.; Zhang, P. F.; Peng, W. Q.; Wu, J. J.; Liu, X. L.; Jiao, C.
    M.; Hu, W. G.; Zhu, Q. S.; Wang, Z. G., One-step growth of ZnO from film to
    vertically well-aligned nanorods and the morphology-dependent Raman scattering.
    Appl. Phys. Lett. 2005, 87, 231903.
    63. Hung, C. H.; Whang, W. T., A novel low-temperature growth and characterization
    of single crystal ZnO nanorods. Mater. Chem. Phys. 2003, 82, 705.
    64. Gao, P. X.; Ding, Y.; Wang, I. L., Crystallographic orientation-aligned ZnO
    nanorods grown by a tin catalyst. Nano Lett. 2003, 3, 1315.
    65. Oskam, G.; Hu, Z. S.; Penn, R. L.; Pesika, N.; Searson, P. C., Coarsening of metal
    oxide nanoparticles. Phys. Rev. E 2002, 66, 011403.
    66. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.;
    Russo, R.; Yang, P. D., Room-temperature ultraviolet nanowire nanolasers. Science
    2001, 292, 1897.
    67. Yang, P. D.; Yan, H. Q.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.;
    Pham, J.; He, R. R.; Choi, H. J., Controlled growth of ZnO nanowires and their
    optical properties. Adv. Funct. Mater. 2002, 12, 323.
    68. Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.; Shim, H. W.; Suh, E. K.; Lee, C. J., Low
    temperature growth and photoluminescence of well-aligned zinc oxide nanowires.
    Chem. Phys. Lett. 2002, 363, 134.
    69. Zhang, J.; Shao, L. X., p-type ZnO nano-thin films prepared by oxidation of Zn3N2
    deposited by rf magnetron sputtering. Optoelectron. Adv. Mater. Rapid Commun.
    2009, 3, 676.
    70. Nian, H.; Hahn, S. H.; Koo, K. K.; Shin, E. W.; Kim, E. J., Sol-gel derived
    N-doped ZnO thin films. Mater. Lett. 2009, 63, 2246.
    71. Willander, M.; Yang, L. L.; Wadeasa, A.; Ali, S. U.; Asif, M. H.; Zhao, Q. X.; Nur,
    O., Zinc oxide nanowires: controlled low temperature growth and some
    electrochemical and optical nano-devices. J. Mater. Chem. 2009, 19, 1006.
    72. Wang, Z. Y.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Wei, J. Y.; Zhan, J.
    Y.; Jing, X. Y.; Liu, H. X.; Xu, Z. H.; Cheng, H. F.; Wang, X. N.; Zheng, Z. K.,
    Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl
    alcohol by hydrothermal method. Mater. Lett. 2009, 63, 130.
    73. Wadeasa, A.; Beegum, S. L.; Raja, S.; Nur, O.; Willander, M., The demonstration
    of hybrid n-ZnO nanorod/p-polymer heterojunction light emitting diodes on glass
    substrates. Appl. Phys. A-Mater. Sci. Process. 2009, 95, 807.
    74. Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia,
    X. T.; Yang, Y. J.; Chang, H. J.; Huang, H. M.; Tseng, S. C.; Chen, L. C.; Chen, K.
    H.; Lin, C. F.; Liang, C. T.; Chen, Y. F., Electroluminescence from
    ZnO/Si-Nanotips Light-Emitting Diodes. Nano Lett. 2009, 9, 1839.
    75. Yang, Y.; Sun, X. W.; Tay, B. K.; You, G. F.; Tan, S. T.; Teo, K. L., A p-n
    homojunction ZnO nanorod light-emitting diode formed by As ion implantation.
    Appl. Phys. Lett. 2008, 93, 253107.
    76. Sun, X. W.; Huang, J. Z.; Wang, J. X.; Xu, Z., A ZnO nanorod inorganic/organic
    heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 2008, 8, 1219.
    77. Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.;
    Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.;
    Kawasaki, M., Repeated temperature modulation epitaxy for p-type doping and
    light-emitting diode based on ZnO. Nat. Mater. 2005, 4, 42.
    78. Konenkamp, R.; Word, R. C.; Godinez, M., Ultraviolet electroluminescence from
    ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005.
    79. Park, W. I.; Yi, G. C., Electroluminescence in n-ZnO nanorod arrays vertically
    grown on p-GaN. Adv. Mater. 2004, 16, 87.
    80. Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J. H.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.;
    Chou, L. J.; Wang, Z. L.; Chen, L. J., Near UV LEDs Made with in Situ Doped p-n
    Homojunction ZnO Nanowire Arrays. Nano Lett. 2010, 10, 4387.
    81. Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L., Fabrication of a
    High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown
    on p-GaN Thin Film. Adv. Mater. 2009, 21, 2767.
    82. Yang, B. Q.; Feng, P.; Kumar, A.; Katiyar, R. S.; Achermann, M., Structural and
    optical properties of N-doped ZnO nanorod arrays. J. Phys. D-Appl. Phys. 2009,
    42, 195402.
    83. Sun, X. W.; Ling, B.; Zhao, J. L.; Tan, S. T.; Yang, Y.; Shen, Y. Q.; Dong, Z. L.; Li,
    X. C., Ultraviolet emission from a ZnO rod homojunction light-emitting diode.
    Appl. Phys. Lett. 2009, 95, 133124.
    84. Chao, C. H.; Lin, W. H.; Chen, C. H.; Changjean, C. H.; Lin, C. F., Tunable light
    extraction efficiency of GaN light emitting diodes by ZnO nanorod arrays.
    Semicond. Sci. Technol. 2009, 24, 105017.
    85. Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.;
    Zhang, W. J.; Bello, I.; Lee, S. T., Vertically Aligned p-Type Single-Crystalline
    GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells. Nano
    Lett. 2008, 8, 4191.
    86. Wu, J. J.; Wong, D. K. P., Fabrication and impedance analysis of n-ZnO
    nanorod/p-Si heterojunctions to investigate carrier concentrations in Zn/O
    source-ratio-tuned ZnO nanorod arrays. Adv. Mater. 2007, 19, 2015.
    87. Deb, P.; Kim, H.; Qin, Y. X.; Lahiji, R.; Oliver, M.; Reifenberger, R.; Sands, T.,
    GaN nanorod Schottky and p-n junction diodes. Nano Lett. 2006, 6, 2893.
    88. Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F., Broadband ZnO
    single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719.
    89. Kim, H. M.; Cho, Y. H.; Lee, H.; Kim, S. I.; Ryu, S. R.; Kim, D. Y.; Kang, T. W.;
    Chung, K. S., High-brightness light emitting diodes using dislocation-free indium
    gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004,
    4, 1059.
    90. Lu, M. P.; Song, J.; Lu, M. Y.; Chen, M. T.; Gao, Y.; Chen, L. J.; Wang, Z. L.,
    Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Lett. 2009,
    9, 1223.
    91. Gao, Y.; Wang, Z. L., Equilibrium Potential of Free Charge Carriers in a Bent
    Piezoelectric Semiconductive Nanowire. Nano Lett. 2009, 9, 1103.
    92. Fei, P.; Yeh, P. H.; Zhou, J.; Xu, S.; Gao, Y. F.; Song, J. H.; Gu, Y. D.; Huang, Y. Y.;
    Wang, Z. L., Piezoelectric Potential Gated Field-Effect Transistor Based on a
    Free-Standing ZnO Wire. Nano Lett. 2009, 9, 3435.
    93. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven
    by ultrasonic waves. Science 2007, 316, 102.
    94. Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L., Nanowire piezoelectric
    nanogenerators on plastic substrates as flexible power sources for nanodevices.
    Adv. Mater. 2007, 19, 67.
    95. Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L., Piezoelectric
    field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano
    Lett. 2006, 6, 2768.
    96. Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L., Elastic property of vertically
    aligned nanowires. Nano Lett. 2005, 5, 1954.
    97. Zhao, M. H.; Wang, Z. L.; Mao, S. X., Piezoelectric characterization of individual
    zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4,
    587.
    98. Hu, Y. F.; Chang, Y. L.; Fei, P.; Snyder, R. L.; Wang, Z. L., Designing the Electric
    Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling
    Piezoelectric and Photoexcitation Effects. Acs Nano 2010, 4, 1234.
    99. Guo, W.; Yang, Y.; Liu, J.; Zhang, Y., Tuning of electronic transport characteristics
    of ZnO micro/nanowire piezotronic Schottky diodes by bending: threshold voltage
    shift. Phys. Chem. Chem. Phys. 2010, 12, 14868.
    100. Yang, Y.; Qi, J. J.; Liao, Q. L.; Li, H. F.; Wang, Y. S.; Tang, L. D.; Zhang, Y.,
    High-performance piezoelectric gate diode of a single polar-surface dominated
    ZnO nanobelt. Nanotechnology 2009, 20, 125201.
    101. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L., Growth
    of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J.
    Mater. Chem. 2009, 19, 9260.
    102. Wang, Z. L., Ten years' venturing in ZnO nanostructures: from discovery to
    scientific understanding and to technology applications. Chin. Sci. Bull. 2009, 54,
    4021.
    103. Lin, S. S.; Song, J. H.; Lu, Y. F.; Wang, Z. L., Identifying individual n- and p-type
    ZnO nanowires by the output voltage sign of piezoelectric nanogenerator.
    Nanotechnology 2009, 20, 365703.
    104. Hu, Y. F.; Gao, Y. F.; Singamaneni, S.; Tsukruk, V. V.; Wang, Z. L., Converse
    Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO
    Microbelt. Nano Lett. 2009, 9, 2661.
    105. Gupta, M. K.; Sinha, N.; Singh, B. K.; Singh, N.; Kumar, K.; Kumar, B.,
    Piezoelectric, dielectric, optical and electrical characterization of solution grown
    flower-like ZnO nanocrystal. Mater. Lett. 2009, 63, 1910.
    106. Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim,
    J. M.; Kim, S. W., Mechanically Powered Transparent Flexible Charge-Generating
    Nanodevices with Piezoelectric ZnO Nanorods. Adv. Mater. 2009, 21, 2185.
    107. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z.
    L., Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035.
    108. Zhou, J.; Fei, P.; Gao, Y. F.; Gu, Y. D.; Liu, J.; Bao, G.; Wang, Z. L.,
    Mechanical-electrical triggers and sensors using piezoelectric
    micowires/nanowires. Nano Lett. 2008, 8, 2725.
    109. Kawasaki, S.; Fan, H. J.; Catalan, G.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott,
    J. F., Solution-process coating of vertical ZnO nanowires with ferroelectrics.
    Nanotechnology 2008, 19, 375302.
    110. Ju, S.; Kim, S.; Mohammadi, S.; Janes, D. B.; Ha, Y. G.; Facchetti, A.; Marks, T.
    J., Interface studies of ZnO nanowire transistors using low-frequency noise and
    temperature-dependent I-V measurements. Appl. Phys. Lett. 2008, 92, 022104.
    111. Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D., Size effects and
    depolarization field influence on the phase diagrams of cylindrical ferroelectric
    nanoparticles. Physica B 2007, 387, 358.
    112. Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide
    nanowire arrays. Science 2006, 312, 242.
    113. Song, J. H.; Zhou, J.; Wang, Z. L., Piezoelectric and semiconducting coupled
    power generating process of a single ZnO belt/wire. A technology for harvesting
    electricity from the environment. Nano Lett. 2006, 6, 1656.
    114. Hong Jin Fan, W. L., Robert Hauschild, Marin Alexe, Gwenal Le Rhun,; Roland
    Scholz, A. D., Kornelius Nielsch, Heinz Kalt, Alois Krost,; Margit Zacharias, a. U.
    G., Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and
    Piezoelectric Applications. Small 2006, 2, 561.
    115. Minne, S. C.; Manalis, S. R.; Quate, C. F., Parallel atomic force microscopy using
    cantilevers with integrated piezoresistive sensors and integrated piezoelectric
    actuators. Appl. Phys. Lett. 1995, 67, 3918.
    116. Wang, X. D.; Zhou, J.; Lao, C. S.; Song, J. H.; Xu, N. S.; Wang, Z. L., In situ field
    emission of density-controlled ZnO nanowire arrays. Adv. Mater. 2007, 19, 1627.
    117. Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission
    from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys.
    Lett. 2002, 81, 3648.
    118. Tang, Y. B.; Cong, H. T.; Wang, Z. M.; Cheng, H. M., Catalyst-seeded synthesis
    and field emission properties of flowerlike Si-doped AlN nanoneedle array. Appl.
    Phys. Lett. 2006, 89, 253112.
    119. Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M., Single
    crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 2004, 4,
    1247.
    120. Lupan, O.; Emelchenko, G. A.; Ursaki V. V.; Chai, G.; Redkin, A. N.; Gruzintsev
    A. N.; Tiginyanu, I. M.; Chow, L.; Ono, L. K.; Cuenya, B. R.; Heinrich, H.;
    Yakimov, E. E. Synthesis and characterization of ZnO nanowires for nanosensor
    applications. Mater. Res. Bull. 2010, 45, 1026.
    121. Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned
    growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays.
    Nano Lett. 2004, 4, 423.
    122. Lin, H. M.; Tzeng, S. J.; Hsiau, P. J.; Tsai, W. L. Electrode effects on gas sensing
    properties of nanocrystalline zinc oxide, Nanostruct. Mater. 1998, 10, 465.
    123. Yu, J.; Ippolito, S. J.; Wlodarski, W.; Strano, M.; Kalantar-Zadeh, K., Nanorod
    based Schottky contact gas sensors in reversed bias condition. Nanotechnology
    2010, 21, 265502.
    124. Ji, L. W.; Peng, S. M.; Su, Y. K.; Young, S. J.; Wu, C. Z.; Cheng, W. B., Ultraviolet
    photodetectors based on selectively grown ZnO nanorod arrays. Appl. Phys. Lett.
    2009, 94, 203106.
    125. Fang, F.; Futter, J.; Markwitz, A.; Kennedy, J., UV and humidity sensing
    properties of ZnO nanorods prepared by the arc discharge method.
    Nanotechnology 2009, 20, 245502.
    126. Liao, Z. M.;Lv, Z. K.; Zhou, Y. B.;, Xu, J.; Zhang, H. M.; Yu, D. P., The effect of
    adsorbates on the space–charge-limited current in single ZnO wires.
    Nanotechnology 2008, 19,335204.
    127. Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P., ZnO
    nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8,
    1501.
    128. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J., ZnO nanotube based
    dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano
    Lett. 2007, 7, 2183.
    129. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X., Improved
    dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett.
    2007, 90, 263501.
    130. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D., ZnO-TiO2 core-shell
    nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451.
    131. Keis, K.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A. Nanostructured ZnO
    electrodes for photovoltaic applications, Nanostruct. Mater. 1999, 12, 487.
    132. Weintraub, B.; Wei, Y. G.; Wang, Z. L., Optical Fiber/Nanowire Hybrid Structures
    for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angew. Chem. Int.
    Ed. 2009, 48, 8981.
    133. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Deng, Z. H.; Liu, Y.; Huang, Z.;
    Huang, J. Q.; Huang, Q. F.; Guo, W.; Liang, J. K., Dye-sensitized solar cells based
    on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl.
    Phys. 2009, 42, 155104.
    134. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire
    dye-sensitized solar cells. Nat. Mater. 2005, 4, 455.
    135. Gratzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol., 2003, 4, 145.
    136. Kim, Y.; Kang, S. H., Aluminum-doped ZnO nanorod array by thermal diffusion
    process. Mater. Lett. 2009, 63, 1065.
    137. Chen, J. T.; Wang, J.; Zhuo, R. F.; Yan, D.; Feng, J. J.; Zhang, F.; Yan, P. X., The
    effect of Al doping on the morphology and optical property of ZnO nanostructures
    prepared by hydrothermal process. Appl. Surf. Sci. 2009, 255, 3959.
    138. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland,
    D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K.
    M.; Wuttig, M.; Ramesh, R., Epitaxial BiFeO3 multiferroic thin film
    heterostructures. Science 2003, 299, 1719.
    139. Michel, C.; Moreau, J. M.; Achenbac.Gd; Gerson, R.; James, W. J., Atomic
    structure of BiFeO3. Solid State Communications 1969, 7, 701.
    140. Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W., Switchable
    Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63.
    141. Smolenskii, G. A.; Chupis, I. E., Segnetomagnetics. Uspekhi Fizicheskikh Nauk
    1982, 13, 415.
    142. Teague, J. R.; Gerson, R.; James, W. J., Dielectric hysteresis in single crystal
    BiFeO3. Solid State Commun. 1970, 8, 1073.
    143. Palkar, V. R.; John, J.; Pinto, R., Observation of saturated polarization and
    dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 2002,
    80, 1628.
    144. Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V., Ferroelectricity in
    a pure BiFeO3 ceramic. Appl. Phys. Lett. 2000, 76, 2764.
    145. Singh, S. K.; Ishiwara, H., Reduced leakage current in BiFeO3 thin films on Si
    substrates formed by a chemical solution method. Jpn. J. Appl. Phys. Part 2 - Lett.
    Express Lett. 2005, 44, L734.
    146. Chung, C. F.; Lin, J. P.; Wu, J. M., Influence of Mn and Nb dopants on electric
    properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 2006,
    88, 242909.
    147. Bea, H.; Bibes, M.; Barthelemy, A.; Bouzehouane, K.; Jacquet, E.; Khodan, A.;
    Contour, J. P.; Fusil, S.; Wyczisk, F.; Forget, A.; Lebeugle, D.; Colson, D.; Viret,
    M., Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films.
    Appl. Phys. Lett. 2005, 87, 072508.
    148. Li, Y. W.; Sun, J. L.; Chen, J.; Meng, X. J.; Chu, J. H., Structural, ferroelectric,
    dielectric, and magnetic properties of BiFeO3/Pb(Zr0.5Ti0.5)O3 multilayer films
    derived by chemical solution deposition. Appl. Phys. Lett. 2005, 87, 182902.
    149. Cheng, Z. X.; Wang, X. L.; Kannan, C. V.; Ozawa, K.; Kimura, H.; Nishida, T.;
    Zhang, S. J.; Shrout, T. R., Enhanced electrical polarization and ferromagnetic
    moment in a multiferroic BiFeO3/Bi3.25Sm0.75Ti2.98V0.02O12 double-layered thin
    film. Appl. Phys. Lett. 2006, 88, 132909.
    150. Uchida, H.; Ueno, R.; Nakaki, H.; Funakubo, H.; Koda, S., Ion modification for
    improvement of insulating and ferroelectric properties of BiFeO3 thin films
    fabricated by chemical solution deposition. Jpn. J. Appl. Phys. Part 2 - Lett.
    Express Lett. 2005, 44, L561.
    151. Das, S. R.; Bhattacharya, P.; Choudhary, R. N. P.; Katiyar, R. S., Effect of La
    substitution on structural and electrical properties of BiFeO3 thin film. J. Appl.
    Phys. 2006, 99, 066107.
    152. Dawber, M.; Rabe, K. M.; Scott, J. F., Physics of thin-film ferroelectric oxides.
    Rev. Mod. Phys. 2005, 77, 1083.
    153. Qi, X. D.; Dho, J.; Tomov, R.; Blamire, M. G.; MacManus-Driscoll, J. L., Greatly
    reduced leakage current and conduction mechanism in aliovalent-ion-doped
    BiFeO3. Appl. Phys. Lett. 2005, 86, 062903.
    154. Chen, S. W.; Wu, J. M., Unipolar resistive switching behavior of BiFeO3 thin films
    prepared by chemical solution deposition. Thin Solid Films 2010, 519, 499.
    155. Balke, N.; Bdikin, I.; Kalinin, S. V.; Kholkin, A. L., Electromechanical Imaging
    and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and
    Prospects for the Future. J. Am. Ceram. Soc. 2009, 92, 1629.
    156. Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.;
    Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; Ramesh, R., Above-bandgap
    voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143.
    157. Wei, J.;Yao, K.; Liang, Y. C., Bulk Photovoltaic Effect at Visible Wavelength in
    Epitaxial Ferroelectric BiFeO3 Thin Films. Advanced Materials 2010, 22, 1763.
    158. Kundys, B.; Viret, M.; Colson, D.; Kundys, D. O., Light- induced size changes in
    BiFeO3 crystals. Nat. Mater. 2010, 9, 803.
    159. Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Basu, S. R.; Paran,D.;
    Reichertz, R.; Ihlefeld, J.; Adamo, C.; Melville, A.; Chu,Y. H.; Yang,Y. H.;
    Musfeldt, J. L.; Schlom, D. G.; Ager III, J. W.; Ramesh, R, Photovoltaic effects in
    BiFeO3. Appl. Phys. Lett. 2009, 95, 062909.
    160. Yuan, G. L.; Wnag, J, Evidences for the depletion region induced by the
    polarization of ferroelectric semiconductors. Appl. Phys. Lett. 2009, 95, 252904.
    161. Upendra A. Joshi, J. S. J., Pramod H. Borse, and Jae Sung Lee, Microwave
    synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode
    and photocatalytic applications. Appl. Phys. Lett. 2008, 92, 242106.
    162. Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek,M.; Ramesh, R.; Rai, R. C.; Xu, X.;
    Musfeld, J. L, Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 2008, 92,
    091905.
    163. Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.;
    Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.;
    Schlom, D. G, Optical band gap of BiFeO3 grown by molecular-beam epitaxy.
    Appl. Phys. Lett. 2008, 92, 142908.
    164. Kumar, A.; Rai, R. C.; Podraza, N. J.; Denev, S.; Ramirez, M.; Chu, Y. H.; Martin,
    L. W.; Ihlefeld, J.; Heeg, T.; Schubert, J.; Schlom, D. G.; Orenstein, J.; Ramesh,
    R., Collins, R. W.; Musfeldt, J. L.; Gopalan, V., Linear and nonlinear optical
    properties of BiFeO3. Appl. Phys. Lett. 2008,92,121915.
    165. Catalan, G.; Scott, J. F., Physics and Applications of Bismuth Ferrite. Adv. Mater.
    2009, 21, 2463.
    166. Qin, M.; Yao, K.; Liang, Y. C., High efficient photovoltaics in nanoscaled
    ferroelectric thin films. Appl. Phys. Lett. 2008, 93, 122904.
    167. Qin, M.; Yao, K.; Liang, Y. C.; Gan, B. K., Stability of photovoltage and trap of
    light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin
    films. Appl. Phys. Lett. 2007, 91, 092904.
    168. Pintilie, L.; Vrejoiu, I.; Rhun, G. L.; Alexe, M., Short-circuit photocurrent in
    epitaxial lead zirconate-titanate thin films. J. Appl. Phys. 2007, 101, 064109.
    169. Fridkin, V. M., Bulk photovoltaic effect in noncentrosymmetric crystals.
    Crystallography Reports 2001, 46, 654.
    170. Glass, A. M.; Linde, D. V. D.; Negran, T. J., High-voltage bulk photorefractive
    process in LiNbO3. Appl. Phys. Lett. 1974, 25, 233.
    171. Chynoweth, A. G.; McKay, K. G., Photon emission from avalanche breakdown in
    silicon. Physical Review 1956, 102, 369.
    172. Eerenstein, W.; Morrison, F. D.; Dho, J.; Blamire, M. G.; Scott, J. F.; Mathur, N.
    D., Comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures".
    Science 2005, 307, 1203.
    173. Xie, S. H.; Li, J. Y.; Qiao, Y.; Liu, Y. Y.; Lan, L. N.; Zhou, Y. C.; Tan, S. T.,
    Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O-3 nanofibers by electrospinning. Appl.
    Phys. Lett. 2008, 92 (6), 3.
    174. Hua, Z. H.; Yang, P.; Huang, H. B.; Wan, J. G.; Yu, Z. Z.; Yang, S. G.; Lu, M.; Gu,
    B. X.; Du, Y. W., Sol-gel template synthesis and characterization of
    magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes. Mater. Chem. Phys. 2008,
    107, 541.
    175. Mohapatra, S. K.; Banerjee, S.; Misra, M., Synthesis of Fe2O3/TiO2
    nanorod-nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology
    2008, 19, 315608.
    176. Hsiao, C. S.; Chen, S. Y.; Kuo, W. L.; Lin, C. C.; Cheng, S. Y., Synthesis and
    optical properties of white-light-emitting alumina/ZnO nanotubes.
    Nanotechnology 2008, 19, 405608.
    177. Hong, J. W.; Fang, D. N., Size-dependent ferroelectric behaviors of BaTiO3
    nanowires. Appl. Phys. Lett. 2008, 92 (1), 012906.
    178. Cao, G. Z.; Liu, D. W., Template-based synthesis of nanorod, nanowire, and
    nanotube arrays. Adv. Colloid Interface Sci. 2008, 136, 45.
    179. Yuh, J.; Perez, L.; Sigmund, W. M.; Nino, J. C., Sol-gel based synthesis of
    complex oxide nanofibers. J. Sol-Gel Sci. Technol. 2007, 42, 323.
    180. Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M. F., Voltage generation
    from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano
    Lett. 2007, 7, 2966.
    181. Singh, S.; Krupanidhi, S. B., Synthesis and structural characterization of
    Ba0.6Sr0.4TiO3 nanotubes. Phys. Lett. A 2007, 367, 356.
    182. Singh, S.; Krupanidhi, S. B., Synthesis and structural characterization of the
    antiferroelectric lead zirconate nanotubes by pulsed laser deposition. Appl. Phys.
    A-Mater. Sci. Process. 2007, 87, 27.
    183. Scott, J. F., Applications of modern ferroelectrics. Science 2007, 315, 954.
    184. Sarkar, J.; Khan, G. G.; Basumallick, A., Nanowires: properties, applications and
    synthesis via porous aluminium oxide template. Bull. Mat. Sci. 2007, 30, 271.
    185. Liu, M.; Li, X.; Imrane, H.; Chen, Y. J.; Goodrich, T.; Cai, Z. H.; Ziemer, K. S.;
    Huang, J. Y.; Sun, N. X., Synthesis of ordered arrays of multiferroic
    NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 2007, 90,
    152501.
    186. Hou, Y. D.; Hou, L.; Yang, J. F.; Zhu, M. K.; Wang, H.; Yan, H., Comparative
    study of formation mechanism of K0.5Bi0.5TiO3 powders synthesized by three
    chemical methods. Acta Chim. Sin. 2007, 65, 950.
    187. Gu, H. S.; Hu, Y. M.; You, J.; Hu, Z. L.; Yuan, Y.; Zhang, T. J., Characterization of
    single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal
    method. J. Appl. Phys. 2007, 101, 024319.
    188. Gu, H. S.; Hu, Y. M.; Wang, H.; Yang, X. R.; Hu, Z. L.; Yuan, Y.; You, J.,
    Fabrication of lead titanate single crystalline nanowires by hydrothermal method
    and their characterization. J. Sol-Gel Sci. Technol. 2007, 42, 293.
    189. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y.
    B., Sequential nucleation and growth of complex nanostructured films. Adv.
    Funct. Mater. 2006, 16, 335.
    190. Reiss, B. D.; Bai, G. R.; Auciello, O.; Ocola, L. E.; Firestone, M. A., Identification
    of peptides for the surface functionalization of perovskite ferroelectrics. Appl.
    Phys. Lett. 2006, 88, 3.
    191. Huang, C. C.; Fung, K. Z., Effect of the surface configuration on the oxidation of
    bismuth nanowire. Mater. Res. Bull. 2006, 41, 1604.
    192. Hu, Z. A.; Wu, H. Y.; Shang, X. L.; Lu, R. J.; Li, H. L., Template synthesis of
    LaMnO3 delta ordered nanowire arrays by converse diffusion or convection.
    Mater. Res. Bull. 2006, 41, 1045.
    193. Hu, Y. M.; Gu, H. S.; Sun, X. C.; You, J.; Wang, J., Photoluminescence and Raman
    scattering studies on PbTiO3 nanowires fabricated by hydrothermal method at low
    temperature. Appl. Phys. Lett. 2006, 88, 3.
    194. Zhang, X. Y.; Dai, J. Y.; Lai, C. W., Synthesis and characterization of highly
    ordered BiFeO3 multiferroic nanowire arrays. Prog. Solid State Chem. 2005, 33,
    147.
    195. Zhang, T.; Jin, C. G.; Zhang, J.; Lu, X. L.; Qian, T.; Li, X. G., Microstructure and
    magnetic properties of ordered La0.62Pb0.38MnO3 nanowire arrays.
    Nanotechnology 2005, 16, 2743.
    196. Yuh, J.; Nino, J. C.; Sigmund, W. A., Synthesis of barium titanate (BaTiO3)
    nanofibers via electrospinning. Mater. Lett. 2005, 59, 3645.
    197. Yang, Z.; Huang, Y.; Dong, B.; Li, H. L., Fabrication and structural properties of
    LaFeO3 nanowires by an ethanol-ammonia-based sol-gel template route. Appl.
    Phys. A-Mater. Sci. Process. 2005, 81, 453.
    198. Xu, G.; Ren, Z. H.; Du, P. Y.; Weng, W. J.; Shen, G.; Han, G. R., Polymer-assisted
    hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3
    nanowires. Adv. Mater. 2005, 17, 907.
    199. Shankar, K. S.; Raychaudhuri, A. K., Fabrication of nanowires of multicomponent
    oxides: Review of recent advances. Mater. Sci. Eng. C-Biomimetic Supramol. Syst.
    2005, 25, 738.
    200. Limmer, S. J.; Chou, T. P.; Cao, G. Z., A study on the influences of processing
    parameters on the growth of oxide nanorod arrays by sol electrophoretic
    deposition. J. Sol-Gel Sci. Technol. 2005, 36, 183.
    201. Huang, C. C.; Leu, I. C.; Fung, K. Z., Fabrication of delta-Bi2O3 nanowires.
    Electrochem. Solid-State Lett. 2005, 8, A204.
    202. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L., alpha-Fe2O3 nanotubes in gas sensor
    and lithium-ion battery applications. Adv. Mater. 2005, 17, 582.
    203. Zhang, X. Y.; Zhao, X.; Lai, C. W.; Wang, J.; Tang, X. G.; Dai, J. Y., Synthesis and
    piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Appl. Phys.
    Lett. 2004, 85, 4190.
    204. Zhu, D. L.; Zhu, H.; Zhang, Y. H., Microstructure and magnetization of
    single-crystal perovskite manganites nanowires prepared by hydrothermal method.
    J. Cryst. Growth 2003, 249, 172.
    205. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.;
    Kim, F.; Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization,
    and applications. Adv. Mater. 2003, 15, 353.
    206. Wang, J. W.; Li, Y. D., Rational synthesis of metal nanotubes and nanowires from
    lamellar structures. Adv. Mater. 2003, 15, 445.
    207. Urban, J. J.; Spanier, J. E.; Lian, O. Y.; Yun, W. S.; Park, H., Single-crystalline
    barium titanate nanowires. Adv. Mater. 2003, 15, 423.
    208. Willander, M.; Yang, L. L.; Wadeasa, A.; Ali, S. U.; Asif, M. H.; Zhao, Q. X.; Nur,
    O., Zinc oxide nanowires: controlled low temperature growth and s Morrison, F.
    D.; Ramsay, L.; Scott, J. F., High aspect ratio piezoelectric
    strontium-bismuth-tantalate nanotubes. J. Phys.-Condes. Matter 2003, 15, L527.
    209. Jin, C. G.; Jiang, G. W.; Liu, W. F.; Cai, W. L.; Yao, L. Z.; Yao, Z.; Li, X. G.,
    Fabrication of large-area single crystal bismuth nanowire arrays. J. Mater. Chem.
    2003, 13, 1743.
    210. Cao, M. H.; Hu, C. W.; Wang, E. B., The first fluoride one-dimensional
    nanostructures: Microemulsion-mediated hydrothermal synthesis of BaF2
    whiskers. J. Am. Chem. Soc. 2003, 125, 11196.
    211. Zhu, D.; Zhu, H.; Zhang, Y. H., Hydrothermal synthesis of single-crystal
    La0.5Sr0.5MnO3 nanowire under mild conditions. J. Phys.-Condes. Matter 2002,
    14, L519.
    212. Yamashita, Y.; Mukai, K.; Yoshinobu, J.; Lippmaa, M.; Kinoshita, T.; Kawasaki,
    M., Chemical nature of nanostructures of La0.6Sr0.4MnO3 on SrTiO3(100). Surf.
    Sci. 2002, 514, 54.
    213. Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H., Synthesis of single-crystalline
    perovskite nanorods composed of barium titanate and strontium titanate. J. Am.
    Chem. Soc. 2002, 124, 1186.
    214. Ma, X. Y.; Zhang, H.; Xu, J.; Niu, J. J.; Yang, Q.; Sha, J. A.; Yang, D. R.,
    Synthesis of La1-xCaxMnO3 nanowires by a sol-gel process. Chem. Phys. Lett.
    2002, 363, 579.
    215. Limmer, S. J.; Seraji, S.; Wu, Y.; Chou, T. P.; Nguyen, C.; Cao, G. Z.,
    Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv.
    Funct. Mater. 2002, 12, 59.
    216. Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S., Synthesis and characterization of
    titania nanostructures on glass by Al anodization and sol-gel process. Chem. Mat.
    2002, 14, 266.
    217. Limmer, S. J.; Seraji, S.; Forbess, M. J.; Wu, Y.; Chou, T. P.; Nguyen, C.; Cao, G.
    Z., Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 2001,
    13, 1269.
    218. Tian, H. Y.; Luo, W. G.; Pu, X. H.; Ding, A. L., Synthesis and microstructure of
    the acetate-based Sr-doped barium titanate thin films using a modified sol-gel
    technique. Journal of Materials Science Letters 2000, 19, 1211.
    219. Seraji, S.; Wu, Y.; Jewell-Larson, N. E.; Forbess, M. J.; Limmer, S. J.; Chou, T. P.;
    Cao, G. Z., Patterned microstructure of sol-gel derived complex oxides using soft
    lithography. Adv. Mater. 2000, 12, 1421.
    220. Bohannan, E. W.; Jaynes, C. C.; Shumsky, M. G.; Barton, J. K.; Switzer, J. A.
    Low-temperature electrodeposition of the high-temperature cubic polymorph of
    bismuth(III) oxide. Solid State Ionics, 2000, 131, 97.
    221. Switzer, J. A.; Shumsky, M. G.; Bohannan, E. W., Electrodeposited ceramic single
    crystals. Science 1999, 284, 293.
    222. Sapp, S. A.; Lakshmi, B. B.; Martin, C. R., Template synthesis of bismuth telluride
    nanowires. Adv. Mater. 1999, 11, 402.
    223. Magri, P.; Boulanger, C.; Lecuire, J. M., Synthesis, properties and performances of
    electrodeposited bismuth telluride films. J. Mater. Chem. 1996, 6, 773.
    224. Lin, Y. R.; Liu, Y. T.; Sodano, H. A., Hydrothermal synthesis of vertically aligned
    lead zirconate titanate nanowire arrays. Appl. Phys. Lett. 2009, 95, 122901.
    225. Rorvik, P. M.; Almli, A.; van Helvoort, A. T. J.; Holmestad, R.; Tybell, T.; Grande,
    T.; Einarsrud, M. A., PbTiO3 nanorod arrays grown by self-assembly of
    nanocrystals. Nanotechnology 2008, 19, 225605.
    226. Hsu, L. C.; Li, Y. Y.; Lo, C. G.; Huang, C. W.; Chern, G., Thermal growth and
    magnetic characterization of alpha-Fe2O3 nanowires. J. Phys. D-Appl. Phys. 2008,
    41, 185003.
    227. Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Zapien, J. A.; Lee, S. T.,
    Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon
    arrays. Adv. Mater. 2006, 18, 1527.
    228. Alexe, M.; Hesse, D.; Schmidt, V.; Senz, S.; Fan, H. J.; Zacharias, M.; Gosele, U.,
    Ferroelectric nanotubes fabricated using nanowires as positive templates. Appl.
    Phys. Lett. 2006, 89, 172907.
    229. Tang, Q.; Zhou, W. J.; Zhang, W.; Ou, S. M.; Jiang, K.; Yu, W. C.; Qian, Y. T.,
    Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Crystal
    Growth & Design 2005, 5, 147.
    230. Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A., Controlled aqueous
    chemical growth of oriented three-dimensional crystalline nanorod arrays:
    Application to iron(III) oxides. Chem. Mat. 2001, 13, 233.
    231. Yang, Y.; Wang, X. H.; Sun, C. K.; Li, L. T., Photoluminescence of ZnO
    nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition. J. Appl.
    Phys. 2009, 105, 094304.
    232. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Guo, W.; Liu, Q. L.; Liang, J.
    K.; Hong, M. C., A plasma sputtering decoration route to producing
    thickness-tunable ZnO/TiO2 core/shell nanorod arrays. Nanotechnology 2009, 20,
    285311.
    233. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Deng, Z. H.; Liu, Y.; Huang, Z.;
    Huang, J. Q.; Huang, Q. F.; Guo, W.; Liang, J. K., Dye-sensitized solar cells based
    on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl.
    Phys. 2009, 42, 155104.
    234. Kim, Y.; Kang, S. H., Aluminum-doped ZnO nanorod array by thermal diffusion
    process. Mater. Lett. 2009, 63, 1065.
    235. Jian, D.; Gao, P. X.; Cai, W. J.; Allimi, B. S.; Alpay, S. P.; Ding, Y.; Wang, Z. L.;
    Brooks, C., Synthesis, characterization, and photocatalytic properties of
    ZnO/(La,Sr)CoO3 composite nanorod arrays. J. Mater. Chem. 2009, 19, 970.
    236. Cao, B. Q.; Zuniga-Perez, J.; Boukos, N.; Czekalla, C.; Hilmer, H.; Lenzner, J.;
    Travlos, A.; Lorenz, M.; Grundmann, M., Homogeneous core/shell ZnO/ZnMgO
    quantum well heterostructures on vertical ZnO nanowires. Nanotechnology 2009,
    20, 305701.
    237. Kawasaki, S.; Catalan, G.; Fan, H. J.; Saad, M. M.; Gregg, J. M.; Correa-Duarte,
    M. A.; Rybczynski, J.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott1, J. F.,
    Conformal oxide coating of carbon nanotubes. Appl. Phys. Lett. 2008, 92, 053109.
    238. Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.;
    Welland, M. E., A simple low temperature synthesis route for ZnO-MgO
    core-shell nanowires. Nanotechnology 2008, 19, 465603.
    239. Kawasaki, S.; Fan, H. J.; Catalan, G.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott,
    J. F., Solution-process coating of vertical ZnO nanowires with ferroelectrics.
    Nanotechnology 2008, 19, 375302.
    240. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D., ZnO-TiO2 core-shell
    nanorod/P3HT solar cells. Journal of Physical Chemistry C 2007, 111, 18451.
    241. Viswanatha, R.; Chakraborty, S.; Basu, S.; Sarma, D. D., Blue-emitting
    copper-doped zinc oxide nanocrystals. Journal of Physical Chemistry B 2006,
    110, 22310.
    242. Zhang, H.; Yang, D. R.; Ma, X. Y.; Que, D. L., A versatile solution route for
    oxide/sulfide core-shell nanostructures and nonlayered sulfide nanotubes.
    Nanotechnology 2005, 16, 2721.
    243. Baik, J. M.; Lee, J. L., Fabrication of vertically well-aligned (Zn,Mn)O nanorods
    with room temperature ferromagnetism. Adv. Mater. 2005, 17, 2745.
    244. Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y.; Huang, C. J., Effect of Sn dopant on the
    properties of ZnO nanowires. J. Phys. D-Appl. Phys. 2004, 37, 2274.
    245. Hwang, J.; Min, B. D.; Lee, J. S.; Keem, K.; Cho, K.; Sung, M. Y.; Lee, M. S.;
    Kim, S., Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell
    nanofibers. Adv. Mater. 2004, 16, 422.
    246. Fujisawa, H.; Kuri, R.; Shimizu, M.; Kotaka, Y.; Honda, K., PbTiO3 and
    Pb(Zr,Ti)O3-Covered ZnO Nanorods. Applied Physics Express 2009, 2, 055103.
    247. Hirose, S.; Nakayama, A.; Niimi, H.; Kageyama, K.; Takagi, H., Resistance
    switching and retention behaviors in polycrystalline La-doped SrTiO3 ceramics
    chip devices. J. Appl. Phys. 2008, 104 , 053712.
    248. Alivov, Y. I.; Agra, F.; Xiao, B.; Chevtchenko, S.; Morkoc, H.; Yoon, J. G.,
    Structural Characteristics of Sputter-Deposited Pb(Zr,Ti)O3/ZnO Heterostructure
    Films. J. Korean Phys. Soc. 2008, 53, 1982.
    249. Lee, S. K.; Lee, W.; Alexe, M.; Nielsch, K.; Hesse, D.; Gosele, U., Well-ordered
    large-area arrays of epitaxial ferroelectric (Bi, La)4Ti3O12 nanostructures
    fabricated by gold nanotube-membrane lithography. Appl. Phys. Lett. 2005, 86,
    152906.
    250. Kohlstedt, H.; Pertsev, N. A.; Contreras, J. R.; Waser, R., Theoretical
    current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B
    2005,72, 125341.
    251. Li, S.; Lin, Y. H.; Zhang, B. P.; Wang, Y.; Nan, C. W., Controlled Fabrication of
    BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors.
    J. Phys. Chem. C 2010, 11, 2903.
    252. Li, S.; Lin,Y. H.;, Zhang, B. P.; Li,J. F.; Nan, C. W., BiFeO3/TiO2 core-shell
    structured nanocomposites as visible-active photocatalysts and their optical
    response mechanism J. Appl. Phys. 2009, 105, 054310.
    253. Li, C. Y.; Liu, B.; Zhao, J. P.; Wang, J. F.; Hu, B. B.; Du, Z. L., Synthesis and
    characterization of BiFeO3 nanotube arrays and Y-junction BiFeO3 nanotubes.
    Chin. Sci. Bull. 2009, 54, 719.
    254. Wei, H.; Xue, D. S.; Xu, Y., Photoabsorption characterization and magnetic
    property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template
    process. Scr. Mater. 2008, 58, 45.
    255. Cho, C. M.; Noh, J. H.; Cho, I. S.; An, J. S.; Hongw, K. S., Low-Temperature
    Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and
    Their Applications as Visible-Light Photocatalysts. J. Am. Ceram. Soc., 2008, 91,
    3753.
    256. Xu, X. Q.; Qian, T.; Zhang, G. Q.; Zhang, T.; Li, G.; Wang, W.; Li, X. G.,
    Fabrication and magnetic properties of multiferroic BiFeO3 nanotube arrays.
    Chem. Lett. 2007, 36, 112.
    257. Liu, Y.; Miao, H. Y.; Zhu, G. Q.; Tan, G. Q., Synthesis and characterization
    well-aligned bismuth ferrite nanowires using hydrothermal method. Rare Metal
    Mat. Eng. 2007, 36, 243.
    258. Zhan Q, Y. R., Crane SP, Structure and interface chemistry of perovskite-spinel
    nanocomposite thin films Appl. Phys. Lett. 2006, 89, 172902.
    259. Han, J. H.; Yuang, Y. H.; Wu, X. J.; Wu, C. L.; Wei, W, Peng, B.; Huang,;
    Goodenough, J. B., Tunable Synthesis of Bismuth Ferrites with Various
    Morphologies. Advanced Materials 2006, 18, 2145.
    260. Zhang, X. Y.; Lai, C. W.; Zhao, X.; Wang, D. Y.; Dai, J. Y., Synthesis and
    ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett.
    2005, 87, 143102.
    261. Zhang, X. Y.; Dai, J. Y.; Lai, C. W. Synthesis and characterization of highly
    ordered BiFeO3 multiferroic nanowire arrays. Prog. Solid State Chem. 2005, 33,
    147.
    262. Lee, Y. H.; Wu, J. M.; Chen, Y. C.; Lu, Y. H.; Lin, H. N., Surface chemistry and
    nanoscale characterizations of multiferroic BiFeO3 thin films Electrochem.
    Solid-State Lett. 2005, 8, F43.
    263. Fujisawa, H.; Seioh, Y.; Kume, M.; Shimizu, M., Epitaxial Growth and
    Ferroelectric Properties of PbTiO3 Nanoislands and Thin Films Grown on
    Single-Crystalline Pt Films. Jpn. J. Appl. Phys., 2008, 47, 7505.
    264. Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia,
    X. T.; Yang, Y. J.; Chang, H. J.; Huang, H. M.; Tseng, S. C.; Chen, L. C.; Chen, K.
    H.; Lin, C. F.; Liang, C. T.; Chen, Y. F., Electroluminescence from
    ZnO/Si-Nanotips Light-Emitting Diodes. Nano Lett. 2009, 9, 1839.
    265. Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M., Single
    crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 2004, 4,
    1247.
    266. Sakurai, M.; Wang, Y. G.; Uemura, T.; Aono, M., Electrical properties of
    individual ZnO nanowires. Nanotechnology 2009, 20, 155203.
    267. Lin, Y. F.; Jian, W. B., The Impact of Nanocontact on Nanowire Based
    Nanoelectronics. Nano Lett. 2008, 8, 3146.
    268. Park, W. I.; Yi, G. C.; Kim, J. W.; Park, S. M., Schottky nanocontacts on ZnO
    nanorod arrays. Appl. Phys. Lett. 2003, 82, 4358.
    269. Heo, Y. W.; Tien, L. C.; Norton, D. P.; Pearton, S. J.; Kang, B. S.; Ren, F.;
    LaRoche, J. R., Pt/ZnO nanowire Schottky diodes. Appl. Phys. Lett. 2004, 85,
    3107.
    270. Seong, H.; Yun, J.; Jun, J. H.; Cho, K.; Kim, S., The transfer of charge carriers
    photogenerated in ZnO nanoparticles into a single ZnO nanowire. Nanotechnology
    2009, 20, 245201.
    271. Piechal, B.; Yoo, J.; Elshaer, A.; Mofor, A. C.; Yi, G. C.; Bakin, A.; Waag, A.;
    Donatini, F.; Dang, L. S. Cathodoluminescence of single ZnO nanorod
    heterostructures, phys. stat. sol. b 2007, 244,1458.
    272. Volk, J.; Nagata, T.; Erdelyi, R.; Barsony, I.; Toth, A. L.; Lukacs, I. E.; Czigany,
    Z.;Tomimoto, H.; Shingaya, Y.; Chikyow, T., Highly Uniform Epitaxial ZnO
    Nanorod Arrays for Nanopiezotronics. Nanoscale Res. Lett. 2009, 4, 699.
    273. Zhang, N.; Yu, K.; Li, L. J.; Zhu, Z. Q., Investigation of electrical and ammonia
    sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO
    nanorod. Appl. Surf. Sci. 2008, 254, 5736.
    274. Rakhshani, A. E., Schottky diodes on ZnO rods grown homoepitaxially by
    successive chemical solution deposition. Semicond. Sci. Technol. 2008, 23,
    075037.
    275. Liao, Z. M.; Lv, Z. K.; Zhou, Y. B.; Xu, J.; Zhang, J. M.; Yu, D. P., The effect of
    adsorbates on the space-charge-limited current in single ZnO nanowires.
    Nanotechnology 2008, 19, 4.
    276. Lao, C. S.; Liu, J.; Gao, P. X.; Zhang, L. Y.; Davidovic, D.; Tummala, R.; Wang,
    Z.L., ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis
    alignment across Au electrodes. Nano Lett. 2006, 6, 263.
    277. Wang, X. D.; Summers, C. J.; Wang, Z. L., Self-attraction among aligned Au/ZnO
    nanorods under electron beam. Appl. Phys. Lett. 2005, 86, 013111.
    278. Park, W. I.; Kim, J. S.; Yi, G. C.; Lee, H. J., ZnO nanorod logic circuits. Adv.
    Mater. 2005, 17, 1393.
    279. Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M., Rectifying
    behavior of electrically aligned ZnO nanorods. Nano Lett. 2003, 3, 1097.
    280. Schroeder, R.; Majewski, L. A.; Grell, M., All-organic permanent memory
    transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv.
    Mater. 2004, 16, 633.
    281. Naber, R. C. G.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M., Low-voltage
    polymer field-effect transistors for nonvolatile memories. Appl. Phys. Lett. 2005,
    87, 203509.
    282. Singh, T. B.; Marjanovic, N.; Matt, G. J.; Sariciftci, N. S.; Schwodiauer, R.; Bauer,
    S., Nonvolatile organic field-effect transistor memory element with a polymeric
    gate electret. Appl. Phys. Lett. 2004, 85, 5409.
    283. Chang , W. Y.; Lin, C. A.; He, J. H.; Wu, T. B., Resistive switching behaviors of
    ZnO nanorod layers. Appl. Phys. Lett. 2010, 96, 242109.
    284. Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F., Fully
    Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and
    High-Density Memory Application. Nano Lett. 2009, 9, 1636.
    285. Son, D. I.; Park, D. H.; Choi, W. K.; Cho, S. H.; Kim, W. T.; Kim, T. W., Carrier
    transport in flexible organic bistable devices of ZnO nanoparticles embedded in an
    insulating poly(methyl methacrylate) polymer layer. Nanotechnology 2009, 20,
    195203.
    286. Ya Yang, J. Q., Qingliang Liao, Huifeng Li, Yishu Wang,Lidan Tang and Yue
    Zhang, High-performance piezoelectric gate diode of a single polar-surface
    dominated ZnO nanobelt. Nanotechnology 2009, 20, 125201.
    287. Vo¨lkel, A. R. ; Street, R. A.; Knipp, D., Carrier transport and density of state
    distributions in pentacene transistors. Phys. Rev. B 2002, 66, 195336.
    288. Dawber, M.; Rabe, K. M.; Scott, J. F., Physics of thin-film ferroelectric oxides.
    Rev. Mod. Phys. 2005, 77, 1083.
    289. Bernardini, F.; Fiorentini, V., Electronic dielectric constants of insulators
    calculated by the polarization method. Phys. Rev. B 1998, 58, 15292.
    290. Oh, D. C.; Kim, J. J.; Makino, H.; Hanada, T.; Cho, M. W.; Yao, T.; Ko, H. J.,
    Characteristics of Schottky contacts to ZnO : N layers grown by molecular-beam
    epitaxy. Appl. Phys. Lett. 2005, 86, 042110.
    291. Ip, K.; Heo, Y. W.; Baik, K. H.; Norton, D. P.; Pearton, S. J.; Kim, S.; LaRoche, J.
    R.; Ren, F., Temperature-dependent characteristics of Pt Schottky contacts on
    n-type ZnO. Appl. Phys. Lett. 2004, 84, 2835.
    292. Cheng, K.; Cheng, G.; Wang, S. J.; Li, L. S.; Dai, S. X.; Zhang, X. T.; Zou, B. S.;
    Du, Z. L., Surface states dominative Au Schottky contact on vertical aligned ZnO
    nanorod arrays synthesized by low-temperature growth. New J. Phys. 2007, 9,
    214.
    293. Zhang, Z. Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M., Current-voltage
    characteristics and parameter retrieval of semiconducting nanowires. Appl. Phys.
    Lett. 2006, 88, 073102.
    294. Coppa, B. J.; Davis, R. F.; Nemanich, R. J., Gold Schottky contacts on oxygen
    plasma-treated, n-type ZnO(000(1)over-bar). Appl. Phys. Lett. 2003, 8,
    400.
    295. Liao, Z. M.; Liu, K. J.; Zhang, J. M.; Xu, J.; Yu, D. P., Effect of surface states on
    electron transport in individual ZnO nanowires. Phys. Lett. A 2007, 367, 207.
    296. Qiao, L.; B, X., Effect of substrate temperature on the microstructure and transport
    properties of highly (100)-oriented LaNiO3 films by pure argon sputtering. J.
    Cryst. Growth 2008, 310, 3653.
    297. Ueno, K.; Yamaguchi, T.; Sakamoto, W.; Yogo, T.; Kikuta, K.; Hirano, S. I.,
    Orientation control of chemical solution deposited LaNiO3 thin films. Thin Solid
    Films 2005, 491, 78.
    298. Zhang, S. T.; Tan, W. S.; Yuan, G. L.; Zhang, X. J.; Cheng, H. W.; Chen, Y. F.; Liu,
    Z. G.; Ming, N. B. Fabrication and electrical properties of
    LaNiO3/Pb(Zr0.61Ti0.39)O3/LaNiO3/LaAlO3 all-perovskite heterostructures,
    Microelectron. Eng. 2003, 66, 701.
    299. Zou, Q.; Ruda, H. E.; Yacobi, B. G., Improved dielectric properties of lead
    zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers.
    Appl. Phys. Lett. 2001, 78, 1282.
    300. Yang, C. C.; Chen, M. S.; Hong, T. J.; Wu, C. M.; Wu, J. M.; Wu, T. B.,
    Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by
    radio-frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3
    . Appl. Phys. Lett. 1995, 66, 2643.
    301. Satyalakshmi, K. M.; Mallya, R. M.; Ramanathan, K. V.; Wu, X. D.; Brainard, B.;
    Gautier, D. C.; Vasanthacharya, N. Y.; Hegde, M. S., Epitaxiall metallic LaNiO,
    thin films grown by pulsed laser deposition. Appl. Phys. Lett. 1992, 62, 1233.
    302. Na, S. H.; Park, C. H., First-Principles Study of the Surface Energy and the Atom
    Cohesion of Wurtzite ZnO and ZnS - Implications for Nanostructure Formation. J.
    Korean Phys. Soc. 2010, 56, 498.
    303. Sosnowska, I.; Peterlinneumaier, T.; Steichele, E., Spiral magnetic-ordering
    bismuth ferrite. Journal of Physics C-Solid State Physics 1982, 15, 4835.
    304. Strohmeier, B. R.; Hercules, D. M., Surface spectroscopic characterization of the
    interaction between zinc ions and gamma-alumina. J. Catal. 1984, 86, 266.
    305. Lupan,O.; Emelchenko, G. A.;Ursaki, V. V.;Chai, G.; Redkin, A. N.; Gruzintsev,
    A. N.; Tiginyanu, I. M.; Chow, L.; Ono, L. K.; Cuenya, B. R.; Heinrich, H.;
    Yakimov, E. E., Synthesis and characterization of ZnO nanowires for nanosensor
    applications. Mater. Res. Bull. 2010, 45, 1026.
    306. Ghoshal, T.; Biswas, S.; Kar, S.; Dev, A.; Chakrabarti, S.; Chaudhuri, S., Direct
    synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation
    process. Nanotechnology 2008, 19, 065606.
    307. Kim, J. S.; Yang, C. H.; Yoon, S. G.; Choi, W. Y.; Kim, H. G., The low
    temperature processing for removal of metallic bismuth in ferroelectric
    SrBi2Ta2O9 thin films. Appl. Surf. Sci. 1999, 140, 150.
    308. Asami, K.; Osaka, T.; Yamanobe, T.; Koiwa, I., Metallic bismuth on
    strontium-bismuth tantalate thin films for ferroelectric memory application. Surf.
    Interface Anal. 2000, 30, 391.
    309. Lee, Y. H.; Wu, J. M., Epitaxial growth of LaFeO3 thin films by RF magnetron
    sputtering. J. Cryst. Growth 2004, 263, 436.
    310. Wu, J. G.; Lou, X. J.; Wang, Y.; Wang, J., Resistive Hysteresis and Diodelike
    Behavior of BiFeO3/ZnO Heterostructure. Electrochem. Solid-State Lett. 2010, 13,
    G9.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE