研究生: |
陳世偉 Chen, Shih-Wei |
---|---|
論文名稱: |
氧化鋅奈米柱及鐵酸鉍包覆氧化鋅奈米柱殼/核結構成長機制及特性研究 Growth mechanisms and characteristics of ZnO nanorod arrays and BiFeO3 covered-ZnO nanorod arrays core/shell hetero-structures |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: |
甘炯耀
李奕賢 葉東昇 徐錦志 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 261 |
中文關鍵詞: | 氧化鋅 、鐵酸鉍 、奈米柱 、殼核結構 、鐵電 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過水熱法製程,我們在ZnO/Si基板製備一系列不同密度及垂直性之氧化鋅奈米柱體。並透過氧化鋅種子層的變化探討其對氧化鋅奈米柱之成長機制。實驗結果顯示,氧化鋅種子層之晶粒大小及表面粗糙度對後續氧化鋅柱體之密度及垂直性有明顯的影響。當氧化鋅種子層表面具有較大晶粒及較大的粗糙度時,成核的機制由晶界成核轉為表面成核。晶界成核導致氧化鋅奈米柱呈現高密度但較差垂直基板特性,表面成核之氧化鋅奈米則呈現較低之柱體密度但具有較佳的垂直基板特性。
實驗中我們透過導電式原子力顯微鏡對單根的氧化鋅奈米柱進行電流電壓(I-V)之量測,量測之I-V結果呈現一非線性且非對稱之圖形。此明顯整流特性的奈米級蕭基二極體,且比起一般文獻值(2 V~4 V)呈現一極大的崩潰電壓(> 10 V)。另外,實驗中我們可以觀察到有一明顯的電流遲滯現象,且此現象的產生與柱體表面產生的化學吸附及脫附現象的產生有關。
透過上述所製備之氧化鋅奈米柱,我們製備一包覆在氧化鋅奈米柱的鐵酸鉍(BFO)奈米結構,並探討其合成、表面形貌及磁性。實驗製程中,BFO的包覆是透過室溫下的鍍製後並於氧氣氛下退火以產生BFO結晶, 450℃的熱處理後開始產生BFO的結晶。透過掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)的檢測,證明BFO包覆在氧化鋅奈米柱上且呈現一多晶之特性。磁性的量測上,BFO/ZNA的異質結構在5 K 及 300 K下呈現一鐵磁矩,矯頑場及保核磁化量明顯的與薄膜特性不同。除此之外,在我們的研究中,X光繞射及SEM的結果顯示BFO的鈣鈦礦結構明顯的比起具有(0002)優選方向的氧化鋅薄膜更容易在ZNA上成長及結晶。BFO與氧化鋅間較大的晶格常數差異導致較差的附著性,使得在濺鍍時Bi3+ 轉變為金屬Bi,且被電將轟擊脫落無法形成BFO層。基於上述的理由,為了成功的使BFO附著於ZNA上,我們透過兩段式鍍製方法,即室溫鍍製後再進行後續的退火以形成BFO結晶。實驗證據顯示,ZNA具有的{101 ̅0}面比起(0002)面更適合BFO的成長。透過高解析穿透式電子顯微鏡(HRTEM)之觀察,發現ZnO之{101 ̅0}面具有崎嶇的表面結構,能有效的幫助BFO成長與結晶。另外,透過LNO緩衝層也能成功的在ZNA上製備與成長出BFO。透過C-AFM及壓電式原子力顯微鏡(PFM)之檢測,顯示BFO/ZNA及BFO/LNO/ZNA異質結構皆呈現二極體特性且有壓電訊號的產生。
1. Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Zapien, J. A.; Leung, Y. H.; Luo, L. B.;
Wang, P. F.; Lee, C. S.; Lee, S. T., p-type ZnO nanowire arrays. Nano Lett. 2008, 8,
2591.
2. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 2004,16, R829.
3. Gao, P. X.; Wang, Z. L., Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 2004, 108, 7534.
4. Wagner, R. S.; Ellis, W. C., Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89.
5. Wang, X. D.; Song, J. H.; Summers, C. J.; Ryou, J. H.; Li, P.; Dupuis, R. D.; Wang, Z. L., Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B 2006, 110, 7720.
6. Park, W. I.; Yi, G. C.; Kim, M. Y.; Pennycook, S. J., ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841.
7. Li, C.; Fang, G. J.; Fu, Q.; Su, F. H.; Li, G. H.; Wu, X. G.; Zhao, X. Z., Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. J. Cryst. Growth 2006, 292, 19.
8. Wu, J. J.; Liu, S. C., Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 2002, 14, 215.
9. Lui, y.; Gorla, C. R.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H. Wraback, M., Ultraviolet Detectors Based on Epitaxial ZnO Films Grown by MOCVD. J. Electron. Mater. 2000, 29, 69.
10. Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Perez, J.
Z.;Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20,1
11. Lorenz, M.; Kaidashev, E. M.; Rahm, A.; Nobis, T.; Wagner, J.; Spemann, D.;
Hochmuth, H.; Grundmann, M., MgxZn1−xO (0<x <0.2) nanowire arrays on
sapphire grown by high-pressure pulsed-laser deposition. Appl. Phys. Lett. 2005,
86, 143113-1.
12. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous
solutions. Adv. Mater. 2003, 15, 464.
13. Sun, Y.; Riley, D. J.; Ashfold, M. N. R., Mechanism of ZnO nanotube growth by
hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 2006,
110, 15186.
14. Zhang, H.; Yang, D.; Ma, X. Y.; Ji, Y. J.; Xu, J.; Que, D. L., Synthesis of
flower-likeZnO nanostructures by an organic-free hydrothermal process.
Nanotechnology 2004, 15, 622.
15. Le, H. Q.; Chua, S. J.; Koh, Y. W.; Loh, K. P.; Fitzgerald, E. A., Systematic studies
of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal
synthesis. J. Cryst. Growth 2006, 293, 36.
16. Musselman, K. P.; Mulholland, G. J.; Robinson, A. P.; Schmidt-Mende, L.;
MacManus-Driscoll, J. L., Low-Temperature Synthesis of Large-Area,
Free-Standing Nanorod Arrays on ITO/Glass and other Conducting Substrates. Adv.
Mater. 2008, 20, 4470.
17. Chang, S. Y.; Yang, N. H.; Huang, Y. C., Hydrothermal Growth and Interface
Correlation of Highly Aligned ZnO Nanorod Arrays on UV-Activated Sol-Gel
Transparent Conducting Films. J. Electrochem. Soc. 2009, 156, K200.
18. Ghoshal, T.; Biswas, S.; Kar, S.; Dev, A.; Chakrabarti, S.; Chaudhuri, S., Direct
synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation
process. Nanotechnology 2008, 19.1.
19. Zhao, X. Q.; Kim, C. R.; Lee, J. Y.; Heo, J. H.; Shin, C. M.; Ryu, H.; Chang, J. H.;
Lee, H. C.; Son, C. S.; Lee, W. J.; Jung, W. G.; Tan, S. T.; Zhao, J. L.; Sun, X. W.,
Effects of buffer layer annealing temperature on the structural and optical
properties of hydrothermal grown ZnO. Appl. Surf. Sci. 2009, 255, 4461.
20. Yang, L. L.; Zhao, Q. X.; Willander, M.; Yang, J. H., Effective way to control the
size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition. J.
Cryst. Growth 2009, 311, 1046.
21. Qiu, J. J.; Li, X. M.; He, W. Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.;
Kim, Y. D., The growth mechanism and optical properties of ultralong ZnO
nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
Nanotechnology 2009, 20,155603.
22. Chow, L.; Lupan, O.; Heinrich, H.; Chai, G., Self-assembly of densely packed and
aligned bilayer ZnO nanorod arrays. Appl. Phys. Lett. 2009, 94,163105-1.
23. Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R.; Bao, G.; Wang, Z. L.,
Piezoelectric-Potential-Control led Polarity-Reversible Schottky Diodes and
Switches of ZnO Wires. Nano Lett. 2008, 8, 3973.
24. Wang, S. F.; Tseng, T. Y.; Wang, Y. R.; Wang, C. Y.; Lu, H. C.; Shih, W. L., Effects
of preparation conditions on the growth of ZnO nanorod arrays using aqueous
solution method. Int. J. Appl. Ceram. Technol. 2008, 5, 419.
25. Liu, J. Z.; Lee, S.; Ahn, Y.; Park, J. Y.; Kim, Y. S.; Koh, K. H.; Lee, K. M.; Park, K.
H., Catalyst-free growth and optical properties of vertically aligned ZnO nanoro
arrays on Si substrates covered with thin buffer layers. J. Korean Phys. Soc. 2008,
53, 141.
26. Li, Z. K.; Huang, X. T.; Liu, J. P.; Li, Y. Y.; Li, G. Y., Morphology control and
transition of ZnO nanorod arrays by a simple hydrothermal method. Mater. Lett.
2008, 62, 1503.
27. Gao, Y. J.; Zhang, W. C.; Wu, X. L.; Xia, Y.; Huang, G. S.; Xu, L. L.; Shen, J. C.;
Siu, G. G.; Chu, P. K., Hydrothermal self-assembling of ZnO nanorods into
sphere-like superstructures and their optical characteristics. Appl. Surf. Sci. 2008,
255, 1982.
28. Chung, T. F.; Zapien, J. A.; Lee, S. T., Luminescent properties of ZnO nanorod
Arrays grown on Al : ZnO buffer layer. J. Phys. Chem. C 2008, 112, 820.
29. Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D., Density-controlled
hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007,
18, 035605.
30. Wang, M.; Ye, C. H.; Zhang, Y.; Hua, G. M.; Wang, H. X.; Kong, M. G.; Zhang, L.
D., Synthesis of well-aligned ZnO nanorod arrays with high optical property via a
low-temperature solution method. J. Cryst. Growth 2006, 291, 334.
31. Park, S. H.; Seo, S. Y.; Kim, S. H.; Han, S. W., Surface roughness and strain effects
on ZnO nanorod growth. Appl. Phys. Lett. 2006, 88, 251903-1.
32. Lu, C. H.; Qi, L. M.; Yang, J. H.; Tang, L.; Zhang, D. Y.; Ma, J. M., Hydrothermal
growth of large-scale micropatterned arrays of ultralong ZnO nanowires and
nanobelts on zinc substrate. Chem. Commun. 2006, 3551.
33. Ge, J. C.; Tang, B.; Zhuo, L. H.; Shi, Z. Q., A rapid hydrothermal route to sisal-like
3D ZnO nanostructures via the assembly of CTA+ and Zn(OH)42-: growth
mechanism and photoluminescence properties. Nanotechnology 2006, 17, 1316.
34. Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R., Synthesis of
aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO
film. Adv. Mater. 2005, 17, 2477.
35. Liou, S. C.; Hsiao, C. S.; Chen, S. Y., Growth behavior and microstructure
evolution of ZnO nanorods grown on Si in aqueous solution. J. Cryst. Growth
2005, 274, 438.
36. Lin, C. C.; Chen, S. Y.; Cheng, S. Y., Nucleation and growth behavior of
well-aligned ZnO nanorods on organic substrates in aqueous solutions. J. Cryst.
Growth 2005, 283, 141.
37. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.;
Yang, P. D., General route to vertical ZnO nanowire arrays using textured ZnO
seeds. Nano Lett. 2005, 5, 1231.
38. Zhang, H. Z.; Sun, X. C.; Wang, R. M.; Yu, D. P., Growth and formation
mechanism of c-oriented ZnO nanorod arrays deposited on glass. J. Cryst. Growth
2004, 269, 464.
39. Henley, S. J.; Ashfold, M. N. R.; Nicholls, D. P.; Wheatley, P.; Cherns, D.,
Controlling the size and alignment of ZnO microrods using ZnO thin film templates
deposited by pulsed laser ablation. Appl. Phys. A-Mater. Sci. Process. 2004, 79,
1169.
40. Ng, H. T.; Li, J.; Smith, M. K.; Nguyen, P.; Cassell, A.; Han, J.; Meyyappan, M.,
Growth of epitaxial nanowires at the junctions of nanowalls. Science 2003, 300,
1249.
41. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W., Soft
solution route to directionally grown ZnO nanorod arrays on Si wafer;
room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911.
42. Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W., Growth mechanism and growth
habit of oxide crystals. J. Cryst. Growth 1999, 203, 186.
43. Na, S. H.; Park, C. H., First-Principles Study of the Surface Energy and the Atom
Cohesion of Wurtzite ZnO and ZnS - Implications for Nanostructure Formation. J.
Korean Phys. Soc., 2010. 56, 498.
44. Yue, S. S.; Lu, J. J.; Zhang, J. Y., Controlled growth of well-aligned hierarchical
ZnO arrays by a wet chemical method. Mater. Lett. 2009, 63, 2149.
45. Wang, S. F. T., T. Y. Wang, Y. R. Wang, C. Y. Lu, H. C., Effect of ZnO seed layers
on the solution chemical growth of ZnO nanorod arrays. Ceram. Int. 2009, 35,
1255.
46. Ma, T.; Guo, M.; Zhang, M.; Wang, X. D., The Effect of the Texture and the
Density of ZnO Seed Layer on the Orientation of ZnO Nanorod Arrays. J. Nanosci.
Nanotechnol. 2009, 9, 5920.
47. Lee, C. Y.; Wang, J. Y.; Chou, Y.; Cheng, C. L.; Chao, C. H.; Shiu, S. C.; Hung, S.
C.; Chao, J. J.; Liu, M. Y.; Su, W. F.; Chen, Y. F.; Lin, C. F., White-light
electroluminescence from ZnO nanorods/polyfluorene by solution-based growth.
Nanotechnology 2009, 20,425202 .
48. Yan, C. L.; Xue, D. F., Solution growth of nano- to microscopic ZnO on Zn. J.
Cryst. Growth 2008, 310, 1836.
49. Huang, J. S.; Lin, C. F., Influences of ZnO sol-gel thin film characteristics on ZnO
nanowire arrays prepared at low temperature using all solution-based processing. J.
Appl. Phys. 2008, 103, 014304.
50. Li, C.; Fang, Fang, G., Li, J.; Ai, L.; Dong, g.; Zhao, X., Effect of Seed Layer on
Structural Properties of ZnO Nanorod Arrays Grown by Vapor-Phase Transport. J.
Phys. Chem. C 2008,112, 990.
51. Lee, Y. J.; Sounart, T. L.; Scrymgeour, D. A.; Voigt, J. A.; Hsu, J. W. P., Control of
ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst.
Growth 2007, 304, 80.
52. Gao, P. X.; Liu, J.; Buchine, B. A.; Weintraub, B.; Wang, Z. L.; Lee, J. L., Bridged
ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 2007, 91, 142104.
53. Zhao, J.; Jin, Z. G.; Liu, X. X.; Liu, Z. F., Growth and morphology of ZnO
nanorods prepared from Zn(NO3)2/NaOH solutions. J. Eur. Ceram. Soc. 2006, 26,
3745.
54. Zhao, J.; Jin, Z. G.; Li, T.; Liu, X. X., Nucleation and growth of ZnO nanorods on
the ZnO-coated seed surface by solution chemical method. J. Eur. Ceram. 2006, 26,
2769.
55. Liu, X. X.; Jin, Z. G.; Bu, S. J.; Zhao, J.; Yu, K., Preparation of ZnO nanorods and
special lath-like crystals by aqueous chemical growth (ACG) method. Mater. Sci.
Eng., B 2006, 129, 139.
56. Liu, X. X.; Jin, Z. G.; Bu, S. J.; Zhao, J.; Liu, Z. F., Growth of ZnO films with
controlled morphology by aqueous solution method. J. Am. Ceram. Soc. 2006, 89,
1226.
57. Song, J.; Lim, S., Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys.
Chem. C 2006, 111, 596.
58. Kong, B. H.; Cho, H. K., Formation of vertically aligned ZnO nanorods on ZnO
templates with the preferred orientation through thermal evaporation. J. Cryst.
Growth 2006, 289, 370.
59. Park, J. Y.; Yun, Y. S.; Hong, Y. S.; Oh, H.; Kim, J. J.; Kim, S. S., Synthesis,
electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO
nanorods on GaN-buffered sapphire substrates. Appl. Phys. Lett. 2005, 87, 123108.
60. Li, Q. C.; Kumar, V.; Li, Y.; Zhang, H. T.; Marks, T. J.; Chang, R. P. H., Fabrication
of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mat. 2005, 17, 1001.
61. Guo, M.; Diao, P.; Cai, S. M., Hydrothermal growth of well-aligned ZnO nanorod
arrays: Dependence of morphology and alignment ordering upon preparing
conditions. J. Solid State Chem. 2005, 178, 1864.
62. Cong, G. W.; Wei, H. Y.; Zhang, P. F.; Peng, W. Q.; Wu, J. J.; Liu, X. L.; Jiao, C.
M.; Hu, W. G.; Zhu, Q. S.; Wang, Z. G., One-step growth of ZnO from film to
vertically well-aligned nanorods and the morphology-dependent Raman scattering.
Appl. Phys. Lett. 2005, 87, 231903.
63. Hung, C. H.; Whang, W. T., A novel low-temperature growth and characterization
of single crystal ZnO nanorods. Mater. Chem. Phys. 2003, 82, 705.
64. Gao, P. X.; Ding, Y.; Wang, I. L., Crystallographic orientation-aligned ZnO
nanorods grown by a tin catalyst. Nano Lett. 2003, 3, 1315.
65. Oskam, G.; Hu, Z. S.; Penn, R. L.; Pesika, N.; Searson, P. C., Coarsening of metal
oxide nanoparticles. Phys. Rev. E 2002, 66, 011403.
66. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.;
Russo, R.; Yang, P. D., Room-temperature ultraviolet nanowire nanolasers. Science
2001, 292, 1897.
67. Yang, P. D.; Yan, H. Q.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.;
Pham, J.; He, R. R.; Choi, H. J., Controlled growth of ZnO nanowires and their
optical properties. Adv. Funct. Mater. 2002, 12, 323.
68. Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.; Shim, H. W.; Suh, E. K.; Lee, C. J., Low
temperature growth and photoluminescence of well-aligned zinc oxide nanowires.
Chem. Phys. Lett. 2002, 363, 134.
69. Zhang, J.; Shao, L. X., p-type ZnO nano-thin films prepared by oxidation of Zn3N2
deposited by rf magnetron sputtering. Optoelectron. Adv. Mater. Rapid Commun.
2009, 3, 676.
70. Nian, H.; Hahn, S. H.; Koo, K. K.; Shin, E. W.; Kim, E. J., Sol-gel derived
N-doped ZnO thin films. Mater. Lett. 2009, 63, 2246.
71. Willander, M.; Yang, L. L.; Wadeasa, A.; Ali, S. U.; Asif, M. H.; Zhao, Q. X.; Nur,
O., Zinc oxide nanowires: controlled low temperature growth and some
electrochemical and optical nano-devices. J. Mater. Chem. 2009, 19, 1006.
72. Wang, Z. Y.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Wei, J. Y.; Zhan, J.
Y.; Jing, X. Y.; Liu, H. X.; Xu, Z. H.; Cheng, H. F.; Wang, X. N.; Zheng, Z. K.,
Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl
alcohol by hydrothermal method. Mater. Lett. 2009, 63, 130.
73. Wadeasa, A.; Beegum, S. L.; Raja, S.; Nur, O.; Willander, M., The demonstration
of hybrid n-ZnO nanorod/p-polymer heterojunction light emitting diodes on glass
substrates. Appl. Phys. A-Mater. Sci. Process. 2009, 95, 807.
74. Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia,
X. T.; Yang, Y. J.; Chang, H. J.; Huang, H. M.; Tseng, S. C.; Chen, L. C.; Chen, K.
H.; Lin, C. F.; Liang, C. T.; Chen, Y. F., Electroluminescence from
ZnO/Si-Nanotips Light-Emitting Diodes. Nano Lett. 2009, 9, 1839.
75. Yang, Y.; Sun, X. W.; Tay, B. K.; You, G. F.; Tan, S. T.; Teo, K. L., A p-n
homojunction ZnO nanorod light-emitting diode formed by As ion implantation.
Appl. Phys. Lett. 2008, 93, 253107.
76. Sun, X. W.; Huang, J. Z.; Wang, J. X.; Xu, Z., A ZnO nanorod inorganic/organic
heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 2008, 8, 1219.
77. Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.;
Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koinuma, H.;
Kawasaki, M., Repeated temperature modulation epitaxy for p-type doping and
light-emitting diode based on ZnO. Nat. Mater. 2005, 4, 42.
78. Konenkamp, R.; Word, R. C.; Godinez, M., Ultraviolet electroluminescence from
ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005.
79. Park, W. I.; Yi, G. C., Electroluminescence in n-ZnO nanorod arrays vertically
grown on p-GaN. Adv. Mater. 2004, 16, 87.
80. Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J. H.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.;
Chou, L. J.; Wang, Z. L.; Chen, L. J., Near UV LEDs Made with in Situ Doped p-n
Homojunction ZnO Nanowire Arrays. Nano Lett. 2010, 10, 4387.
81. Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L., Fabrication of a
High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown
on p-GaN Thin Film. Adv. Mater. 2009, 21, 2767.
82. Yang, B. Q.; Feng, P.; Kumar, A.; Katiyar, R. S.; Achermann, M., Structural and
optical properties of N-doped ZnO nanorod arrays. J. Phys. D-Appl. Phys. 2009,
42, 195402.
83. Sun, X. W.; Ling, B.; Zhao, J. L.; Tan, S. T.; Yang, Y.; Shen, Y. Q.; Dong, Z. L.; Li,
X. C., Ultraviolet emission from a ZnO rod homojunction light-emitting diode.
Appl. Phys. Lett. 2009, 95, 133124.
84. Chao, C. H.; Lin, W. H.; Chen, C. H.; Changjean, C. H.; Lin, C. F., Tunable light
extraction efficiency of GaN light emitting diodes by ZnO nanorod arrays.
Semicond. Sci. Technol. 2009, 24, 105017.
85. Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.;
Zhang, W. J.; Bello, I.; Lee, S. T., Vertically Aligned p-Type Single-Crystalline
GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells. Nano
Lett. 2008, 8, 4191.
86. Wu, J. J.; Wong, D. K. P., Fabrication and impedance analysis of n-ZnO
nanorod/p-Si heterojunctions to investigate carrier concentrations in Zn/O
source-ratio-tuned ZnO nanorod arrays. Adv. Mater. 2007, 19, 2015.
87. Deb, P.; Kim, H.; Qin, Y. X.; Lahiji, R.; Oliver, M.; Reifenberger, R.; Sands, T.,
GaN nanorod Schottky and p-n junction diodes. Nano Lett. 2006, 6, 2893.
88. Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F., Broadband ZnO
single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719.
89. Kim, H. M.; Cho, Y. H.; Lee, H.; Kim, S. I.; Ryu, S. R.; Kim, D. Y.; Kang, T. W.;
Chung, K. S., High-brightness light emitting diodes using dislocation-free indium
gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 2004,
4, 1059.
90. Lu, M. P.; Song, J.; Lu, M. Y.; Chen, M. T.; Gao, Y.; Chen, L. J.; Wang, Z. L.,
Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Lett. 2009,
9, 1223.
91. Gao, Y.; Wang, Z. L., Equilibrium Potential of Free Charge Carriers in a Bent
Piezoelectric Semiconductive Nanowire. Nano Lett. 2009, 9, 1103.
92. Fei, P.; Yeh, P. H.; Zhou, J.; Xu, S.; Gao, Y. F.; Song, J. H.; Gu, Y. D.; Huang, Y. Y.;
Wang, Z. L., Piezoelectric Potential Gated Field-Effect Transistor Based on a
Free-Standing ZnO Wire. Nano Lett. 2009, 9, 3435.
93. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L., Direct-current nanogenerator driven
by ultrasonic waves. Science 2007, 316, 102.
94. Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L., Nanowire piezoelectric
nanogenerators on plastic substrates as flexible power sources for nanodevices.
Adv. Mater. 2007, 19, 67.
95. Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L., Piezoelectric
field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano
Lett. 2006, 6, 2768.
96. Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L., Elastic property of vertically
aligned nanowires. Nano Lett. 2005, 5, 1954.
97. Zhao, M. H.; Wang, Z. L.; Mao, S. X., Piezoelectric characterization of individual
zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4,
587.
98. Hu, Y. F.; Chang, Y. L.; Fei, P.; Snyder, R. L.; Wang, Z. L., Designing the Electric
Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling
Piezoelectric and Photoexcitation Effects. Acs Nano 2010, 4, 1234.
99. Guo, W.; Yang, Y.; Liu, J.; Zhang, Y., Tuning of electronic transport characteristics
of ZnO micro/nanowire piezotronic Schottky diodes by bending: threshold voltage
shift. Phys. Chem. Chem. Phys. 2010, 12, 14868.
100. Yang, Y.; Qi, J. J.; Liao, Q. L.; Li, H. F.; Wang, Y. S.; Tang, L. D.; Zhang, Y.,
High-performance piezoelectric gate diode of a single polar-surface dominated
ZnO nanobelt. Nanotechnology 2009, 20, 125201.
101. Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L., Growth
of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J.
Mater. Chem. 2009, 19, 9260.
102. Wang, Z. L., Ten years' venturing in ZnO nanostructures: from discovery to
scientific understanding and to technology applications. Chin. Sci. Bull. 2009, 54,
4021.
103. Lin, S. S.; Song, J. H.; Lu, Y. F.; Wang, Z. L., Identifying individual n- and p-type
ZnO nanowires by the output voltage sign of piezoelectric nanogenerator.
Nanotechnology 2009, 20, 365703.
104. Hu, Y. F.; Gao, Y. F.; Singamaneni, S.; Tsukruk, V. V.; Wang, Z. L., Converse
Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO
Microbelt. Nano Lett. 2009, 9, 2661.
105. Gupta, M. K.; Sinha, N.; Singh, B. K.; Singh, N.; Kumar, K.; Kumar, B.,
Piezoelectric, dielectric, optical and electrical characterization of solution grown
flower-like ZnO nanocrystal. Mater. Lett. 2009, 63, 1910.
106. Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim,
J. M.; Kim, S. W., Mechanically Powered Transparent Flexible Charge-Generating
Nanodevices with Piezoelectric ZnO Nanorods. Adv. Mater. 2009, 21, 2185.
107. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z.
L., Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035.
108. Zhou, J.; Fei, P.; Gao, Y. F.; Gu, Y. D.; Liu, J.; Bao, G.; Wang, Z. L.,
Mechanical-electrical triggers and sensors using piezoelectric
micowires/nanowires. Nano Lett. 2008, 8, 2725.
109. Kawasaki, S.; Fan, H. J.; Catalan, G.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott,
J. F., Solution-process coating of vertical ZnO nanowires with ferroelectrics.
Nanotechnology 2008, 19, 375302.
110. Ju, S.; Kim, S.; Mohammadi, S.; Janes, D. B.; Ha, Y. G.; Facchetti, A.; Marks, T.
J., Interface studies of ZnO nanowire transistors using low-frequency noise and
temperature-dependent I-V measurements. Appl. Phys. Lett. 2008, 92, 022104.
111. Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D., Size effects and
depolarization field influence on the phase diagrams of cylindrical ferroelectric
nanoparticles. Physica B 2007, 387, 358.
112. Wang, Z. L.; Song, J. H., Piezoelectric nanogenerators based on zinc oxide
nanowire arrays. Science 2006, 312, 242.
113. Song, J. H.; Zhou, J.; Wang, Z. L., Piezoelectric and semiconducting coupled
power generating process of a single ZnO belt/wire. A technology for harvesting
electricity from the environment. Nano Lett. 2006, 6, 1656.
114. Hong Jin Fan, W. L., Robert Hauschild, Marin Alexe, Gwenal Le Rhun,; Roland
Scholz, A. D., Kornelius Nielsch, Heinz Kalt, Alois Krost,; Margit Zacharias, a. U.
G., Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and
Piezoelectric Applications. Small 2006, 2, 561.
115. Minne, S. C.; Manalis, S. R.; Quate, C. F., Parallel atomic force microscopy using
cantilevers with integrated piezoresistive sensors and integrated piezoelectric
actuators. Appl. Phys. Lett. 1995, 67, 3918.
116. Wang, X. D.; Zhou, J.; Lao, C. S.; Song, J. H.; Xu, N. S.; Wang, Z. L., In situ field
emission of density-controlled ZnO nanowire arrays. Adv. Mater. 2007, 19, 1627.
117. Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission
from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys.
Lett. 2002, 81, 3648.
118. Tang, Y. B.; Cong, H. T.; Wang, Z. M.; Cheng, H. M., Catalyst-seeded synthesis
and field emission properties of flowerlike Si-doped AlN nanoneedle array. Appl.
Phys. Lett. 2006, 89, 253112.
119. Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M., Single
crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 2004, 4,
1247.
120. Lupan, O.; Emelchenko, G. A.; Ursaki V. V.; Chai, G.; Redkin, A. N.; Gruzintsev
A. N.; Tiginyanu, I. M.; Chow, L.; Ono, L. K.; Cuenya, B. R.; Heinrich, H.;
Yakimov, E. E. Synthesis and characterization of ZnO nanowires for nanosensor
applications. Mater. Res. Bull. 2010, 45, 1026.
121. Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned
growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays.
Nano Lett. 2004, 4, 423.
122. Lin, H. M.; Tzeng, S. J.; Hsiau, P. J.; Tsai, W. L. Electrode effects on gas sensing
properties of nanocrystalline zinc oxide, Nanostruct. Mater. 1998, 10, 465.
123. Yu, J.; Ippolito, S. J.; Wlodarski, W.; Strano, M.; Kalantar-Zadeh, K., Nanorod
based Schottky contact gas sensors in reversed bias condition. Nanotechnology
2010, 21, 265502.
124. Ji, L. W.; Peng, S. M.; Su, Y. K.; Young, S. J.; Wu, C. Z.; Cheng, W. B., Ultraviolet
photodetectors based on selectively grown ZnO nanorod arrays. Appl. Phys. Lett.
2009, 94, 203106.
125. Fang, F.; Futter, J.; Markwitz, A.; Kennedy, J., UV and humidity sensing
properties of ZnO nanorods prepared by the arc discharge method.
Nanotechnology 2009, 20, 245502.
126. Liao, Z. M.;Lv, Z. K.; Zhou, Y. B.;, Xu, J.; Zhang, H. M.; Yu, D. P., The effect of
adsorbates on the space–charge-limited current in single ZnO wires.
Nanotechnology 2008, 19,335204.
127. Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P., ZnO
nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8,
1501.
128. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J., ZnO nanotube based
dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano
Lett. 2007, 7, 2183.
129. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X., Improved
dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett.
2007, 90, 263501.
130. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D., ZnO-TiO2 core-shell
nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451.
131. Keis, K.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A. Nanostructured ZnO
electrodes for photovoltaic applications, Nanostruct. Mater. 1999, 12, 487.
132. Weintraub, B.; Wei, Y. G.; Wang, Z. L., Optical Fiber/Nanowire Hybrid Structures
for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angew. Chem. Int.
Ed. 2009, 48, 8981.
133. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Deng, Z. H.; Liu, Y.; Huang, Z.;
Huang, J. Q.; Huang, Q. F.; Guo, W.; Liang, J. K., Dye-sensitized solar cells based
on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl.
Phys. 2009, 42, 155104.
134. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire
dye-sensitized solar cells. Nat. Mater. 2005, 4, 455.
135. Gratzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol., 2003, 4, 145.
136. Kim, Y.; Kang, S. H., Aluminum-doped ZnO nanorod array by thermal diffusion
process. Mater. Lett. 2009, 63, 1065.
137. Chen, J. T.; Wang, J.; Zhuo, R. F.; Yan, D.; Feng, J. J.; Zhang, F.; Yan, P. X., The
effect of Al doping on the morphology and optical property of ZnO nanostructures
prepared by hydrothermal process. Appl. Surf. Sci. 2009, 255, 3959.
138. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland,
D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K.
M.; Wuttig, M.; Ramesh, R., Epitaxial BiFeO3 multiferroic thin film
heterostructures. Science 2003, 299, 1719.
139. Michel, C.; Moreau, J. M.; Achenbac.Gd; Gerson, R.; James, W. J., Atomic
structure of BiFeO3. Solid State Communications 1969, 7, 701.
140. Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W., Switchable
Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63.
141. Smolenskii, G. A.; Chupis, I. E., Segnetomagnetics. Uspekhi Fizicheskikh Nauk
1982, 13, 415.
142. Teague, J. R.; Gerson, R.; James, W. J., Dielectric hysteresis in single crystal
BiFeO3. Solid State Commun. 1970, 8, 1073.
143. Palkar, V. R.; John, J.; Pinto, R., Observation of saturated polarization and
dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 2002,
80, 1628.
144. Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V., Ferroelectricity in
a pure BiFeO3 ceramic. Appl. Phys. Lett. 2000, 76, 2764.
145. Singh, S. K.; Ishiwara, H., Reduced leakage current in BiFeO3 thin films on Si
substrates formed by a chemical solution method. Jpn. J. Appl. Phys. Part 2 - Lett.
Express Lett. 2005, 44, L734.
146. Chung, C. F.; Lin, J. P.; Wu, J. M., Influence of Mn and Nb dopants on electric
properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 2006,
88, 242909.
147. Bea, H.; Bibes, M.; Barthelemy, A.; Bouzehouane, K.; Jacquet, E.; Khodan, A.;
Contour, J. P.; Fusil, S.; Wyczisk, F.; Forget, A.; Lebeugle, D.; Colson, D.; Viret,
M., Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films.
Appl. Phys. Lett. 2005, 87, 072508.
148. Li, Y. W.; Sun, J. L.; Chen, J.; Meng, X. J.; Chu, J. H., Structural, ferroelectric,
dielectric, and magnetic properties of BiFeO3/Pb(Zr0.5Ti0.5)O3 multilayer films
derived by chemical solution deposition. Appl. Phys. Lett. 2005, 87, 182902.
149. Cheng, Z. X.; Wang, X. L.; Kannan, C. V.; Ozawa, K.; Kimura, H.; Nishida, T.;
Zhang, S. J.; Shrout, T. R., Enhanced electrical polarization and ferromagnetic
moment in a multiferroic BiFeO3/Bi3.25Sm0.75Ti2.98V0.02O12 double-layered thin
film. Appl. Phys. Lett. 2006, 88, 132909.
150. Uchida, H.; Ueno, R.; Nakaki, H.; Funakubo, H.; Koda, S., Ion modification for
improvement of insulating and ferroelectric properties of BiFeO3 thin films
fabricated by chemical solution deposition. Jpn. J. Appl. Phys. Part 2 - Lett.
Express Lett. 2005, 44, L561.
151. Das, S. R.; Bhattacharya, P.; Choudhary, R. N. P.; Katiyar, R. S., Effect of La
substitution on structural and electrical properties of BiFeO3 thin film. J. Appl.
Phys. 2006, 99, 066107.
152. Dawber, M.; Rabe, K. M.; Scott, J. F., Physics of thin-film ferroelectric oxides.
Rev. Mod. Phys. 2005, 77, 1083.
153. Qi, X. D.; Dho, J.; Tomov, R.; Blamire, M. G.; MacManus-Driscoll, J. L., Greatly
reduced leakage current and conduction mechanism in aliovalent-ion-doped
BiFeO3. Appl. Phys. Lett. 2005, 86, 062903.
154. Chen, S. W.; Wu, J. M., Unipolar resistive switching behavior of BiFeO3 thin films
prepared by chemical solution deposition. Thin Solid Films 2010, 519, 499.
155. Balke, N.; Bdikin, I.; Kalinin, S. V.; Kholkin, A. L., Electromechanical Imaging
and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and
Prospects for the Future. J. Am. Ceram. Soc. 2009, 92, 1629.
156. Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.;
Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; Ramesh, R., Above-bandgap
voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143.
157. Wei, J.;Yao, K.; Liang, Y. C., Bulk Photovoltaic Effect at Visible Wavelength in
Epitaxial Ferroelectric BiFeO3 Thin Films. Advanced Materials 2010, 22, 1763.
158. Kundys, B.; Viret, M.; Colson, D.; Kundys, D. O., Light- induced size changes in
BiFeO3 crystals. Nat. Mater. 2010, 9, 803.
159. Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Basu, S. R.; Paran,D.;
Reichertz, R.; Ihlefeld, J.; Adamo, C.; Melville, A.; Chu,Y. H.; Yang,Y. H.;
Musfeldt, J. L.; Schlom, D. G.; Ager III, J. W.; Ramesh, R, Photovoltaic effects in
BiFeO3. Appl. Phys. Lett. 2009, 95, 062909.
160. Yuan, G. L.; Wnag, J, Evidences for the depletion region induced by the
polarization of ferroelectric semiconductors. Appl. Phys. Lett. 2009, 95, 252904.
161. Upendra A. Joshi, J. S. J., Pramod H. Borse, and Jae Sung Lee, Microwave
synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode
and photocatalytic applications. Appl. Phys. Lett. 2008, 92, 242106.
162. Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek,M.; Ramesh, R.; Rai, R. C.; Xu, X.;
Musfeld, J. L, Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 2008, 92,
091905.
163. Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.;
Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.;
Schlom, D. G, Optical band gap of BiFeO3 grown by molecular-beam epitaxy.
Appl. Phys. Lett. 2008, 92, 142908.
164. Kumar, A.; Rai, R. C.; Podraza, N. J.; Denev, S.; Ramirez, M.; Chu, Y. H.; Martin,
L. W.; Ihlefeld, J.; Heeg, T.; Schubert, J.; Schlom, D. G.; Orenstein, J.; Ramesh,
R., Collins, R. W.; Musfeldt, J. L.; Gopalan, V., Linear and nonlinear optical
properties of BiFeO3. Appl. Phys. Lett. 2008,92,121915.
165. Catalan, G.; Scott, J. F., Physics and Applications of Bismuth Ferrite. Adv. Mater.
2009, 21, 2463.
166. Qin, M.; Yao, K.; Liang, Y. C., High efficient photovoltaics in nanoscaled
ferroelectric thin films. Appl. Phys. Lett. 2008, 93, 122904.
167. Qin, M.; Yao, K.; Liang, Y. C.; Gan, B. K., Stability of photovoltage and trap of
light-induced charges in ferroelectric WO3-doped (Pb0.97La0.03)(Zr0.52Ti0.48)O3 thin
films. Appl. Phys. Lett. 2007, 91, 092904.
168. Pintilie, L.; Vrejoiu, I.; Rhun, G. L.; Alexe, M., Short-circuit photocurrent in
epitaxial lead zirconate-titanate thin films. J. Appl. Phys. 2007, 101, 064109.
169. Fridkin, V. M., Bulk photovoltaic effect in noncentrosymmetric crystals.
Crystallography Reports 2001, 46, 654.
170. Glass, A. M.; Linde, D. V. D.; Negran, T. J., High-voltage bulk photorefractive
process in LiNbO3. Appl. Phys. Lett. 1974, 25, 233.
171. Chynoweth, A. G.; McKay, K. G., Photon emission from avalanche breakdown in
silicon. Physical Review 1956, 102, 369.
172. Eerenstein, W.; Morrison, F. D.; Dho, J.; Blamire, M. G.; Scott, J. F.; Mathur, N.
D., Comment on "Epitaxial BiFeO3 multiferroic thin film heterostructures".
Science 2005, 307, 1203.
173. Xie, S. H.; Li, J. Y.; Qiao, Y.; Liu, Y. Y.; Lan, L. N.; Zhou, Y. C.; Tan, S. T.,
Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O-3 nanofibers by electrospinning. Appl.
Phys. Lett. 2008, 92 (6), 3.
174. Hua, Z. H.; Yang, P.; Huang, H. B.; Wan, J. G.; Yu, Z. Z.; Yang, S. G.; Lu, M.; Gu,
B. X.; Du, Y. W., Sol-gel template synthesis and characterization of
magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanotubes. Mater. Chem. Phys. 2008,
107, 541.
175. Mohapatra, S. K.; Banerjee, S.; Misra, M., Synthesis of Fe2O3/TiO2
nanorod-nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology
2008, 19, 315608.
176. Hsiao, C. S.; Chen, S. Y.; Kuo, W. L.; Lin, C. C.; Cheng, S. Y., Synthesis and
optical properties of white-light-emitting alumina/ZnO nanotubes.
Nanotechnology 2008, 19, 405608.
177. Hong, J. W.; Fang, D. N., Size-dependent ferroelectric behaviors of BaTiO3
nanowires. Appl. Phys. Lett. 2008, 92 (1), 012906.
178. Cao, G. Z.; Liu, D. W., Template-based synthesis of nanorod, nanowire, and
nanotube arrays. Adv. Colloid Interface Sci. 2008, 136, 45.
179. Yuh, J.; Perez, L.; Sigmund, W. M.; Nino, J. C., Sol-gel based synthesis of
complex oxide nanofibers. J. Sol-Gel Sci. Technol. 2007, 42, 323.
180. Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M. F., Voltage generation
from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano
Lett. 2007, 7, 2966.
181. Singh, S.; Krupanidhi, S. B., Synthesis and structural characterization of
Ba0.6Sr0.4TiO3 nanotubes. Phys. Lett. A 2007, 367, 356.
182. Singh, S.; Krupanidhi, S. B., Synthesis and structural characterization of the
antiferroelectric lead zirconate nanotubes by pulsed laser deposition. Appl. Phys.
A-Mater. Sci. Process. 2007, 87, 27.
183. Scott, J. F., Applications of modern ferroelectrics. Science 2007, 315, 954.
184. Sarkar, J.; Khan, G. G.; Basumallick, A., Nanowires: properties, applications and
synthesis via porous aluminium oxide template. Bull. Mat. Sci. 2007, 30, 271.
185. Liu, M.; Li, X.; Imrane, H.; Chen, Y. J.; Goodrich, T.; Cai, Z. H.; Ziemer, K. S.;
Huang, J. Y.; Sun, N. X., Synthesis of ordered arrays of multiferroic
NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 2007, 90,
152501.
186. Hou, Y. D.; Hou, L.; Yang, J. F.; Zhu, M. K.; Wang, H.; Yan, H., Comparative
study of formation mechanism of K0.5Bi0.5TiO3 powders synthesized by three
chemical methods. Acta Chim. Sin. 2007, 65, 950.
187. Gu, H. S.; Hu, Y. M.; You, J.; Hu, Z. L.; Yuan, Y.; Zhang, T. J., Characterization of
single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal
method. J. Appl. Phys. 2007, 101, 024319.
188. Gu, H. S.; Hu, Y. M.; Wang, H.; Yang, X. R.; Hu, Z. L.; Yuan, Y.; You, J.,
Fabrication of lead titanate single crystalline nanowires by hydrothermal method
and their characterization. J. Sol-Gel Sci. Technol. 2007, 42, 293.
189. Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y.
B., Sequential nucleation and growth of complex nanostructured films. Adv.
Funct. Mater. 2006, 16, 335.
190. Reiss, B. D.; Bai, G. R.; Auciello, O.; Ocola, L. E.; Firestone, M. A., Identification
of peptides for the surface functionalization of perovskite ferroelectrics. Appl.
Phys. Lett. 2006, 88, 3.
191. Huang, C. C.; Fung, K. Z., Effect of the surface configuration on the oxidation of
bismuth nanowire. Mater. Res. Bull. 2006, 41, 1604.
192. Hu, Z. A.; Wu, H. Y.; Shang, X. L.; Lu, R. J.; Li, H. L., Template synthesis of
LaMnO3 delta ordered nanowire arrays by converse diffusion or convection.
Mater. Res. Bull. 2006, 41, 1045.
193. Hu, Y. M.; Gu, H. S.; Sun, X. C.; You, J.; Wang, J., Photoluminescence and Raman
scattering studies on PbTiO3 nanowires fabricated by hydrothermal method at low
temperature. Appl. Phys. Lett. 2006, 88, 3.
194. Zhang, X. Y.; Dai, J. Y.; Lai, C. W., Synthesis and characterization of highly
ordered BiFeO3 multiferroic nanowire arrays. Prog. Solid State Chem. 2005, 33,
147.
195. Zhang, T.; Jin, C. G.; Zhang, J.; Lu, X. L.; Qian, T.; Li, X. G., Microstructure and
magnetic properties of ordered La0.62Pb0.38MnO3 nanowire arrays.
Nanotechnology 2005, 16, 2743.
196. Yuh, J.; Nino, J. C.; Sigmund, W. A., Synthesis of barium titanate (BaTiO3)
nanofibers via electrospinning. Mater. Lett. 2005, 59, 3645.
197. Yang, Z.; Huang, Y.; Dong, B.; Li, H. L., Fabrication and structural properties of
LaFeO3 nanowires by an ethanol-ammonia-based sol-gel template route. Appl.
Phys. A-Mater. Sci. Process. 2005, 81, 453.
198. Xu, G.; Ren, Z. H.; Du, P. Y.; Weng, W. J.; Shen, G.; Han, G. R., Polymer-assisted
hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3
nanowires. Adv. Mater. 2005, 17, 907.
199. Shankar, K. S.; Raychaudhuri, A. K., Fabrication of nanowires of multicomponent
oxides: Review of recent advances. Mater. Sci. Eng. C-Biomimetic Supramol. Syst.
2005, 25, 738.
200. Limmer, S. J.; Chou, T. P.; Cao, G. Z., A study on the influences of processing
parameters on the growth of oxide nanorod arrays by sol electrophoretic
deposition. J. Sol-Gel Sci. Technol. 2005, 36, 183.
201. Huang, C. C.; Leu, I. C.; Fung, K. Z., Fabrication of delta-Bi2O3 nanowires.
Electrochem. Solid-State Lett. 2005, 8, A204.
202. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L., alpha-Fe2O3 nanotubes in gas sensor
and lithium-ion battery applications. Adv. Mater. 2005, 17, 582.
203. Zhang, X. Y.; Zhao, X.; Lai, C. W.; Wang, J.; Tang, X. G.; Dai, J. Y., Synthesis and
piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Appl. Phys.
Lett. 2004, 85, 4190.
204. Zhu, D. L.; Zhu, H.; Zhang, Y. H., Microstructure and magnetization of
single-crystal perovskite manganites nanowires prepared by hydrothermal method.
J. Cryst. Growth 2003, 249, 172.
205. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.;
Kim, F.; Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization,
and applications. Adv. Mater. 2003, 15, 353.
206. Wang, J. W.; Li, Y. D., Rational synthesis of metal nanotubes and nanowires from
lamellar structures. Adv. Mater. 2003, 15, 445.
207. Urban, J. J.; Spanier, J. E.; Lian, O. Y.; Yun, W. S.; Park, H., Single-crystalline
barium titanate nanowires. Adv. Mater. 2003, 15, 423.
208. Willander, M.; Yang, L. L.; Wadeasa, A.; Ali, S. U.; Asif, M. H.; Zhao, Q. X.; Nur,
O., Zinc oxide nanowires: controlled low temperature growth and s Morrison, F.
D.; Ramsay, L.; Scott, J. F., High aspect ratio piezoelectric
strontium-bismuth-tantalate nanotubes. J. Phys.-Condes. Matter 2003, 15, L527.
209. Jin, C. G.; Jiang, G. W.; Liu, W. F.; Cai, W. L.; Yao, L. Z.; Yao, Z.; Li, X. G.,
Fabrication of large-area single crystal bismuth nanowire arrays. J. Mater. Chem.
2003, 13, 1743.
210. Cao, M. H.; Hu, C. W.; Wang, E. B., The first fluoride one-dimensional
nanostructures: Microemulsion-mediated hydrothermal synthesis of BaF2
whiskers. J. Am. Chem. Soc. 2003, 125, 11196.
211. Zhu, D.; Zhu, H.; Zhang, Y. H., Hydrothermal synthesis of single-crystal
La0.5Sr0.5MnO3 nanowire under mild conditions. J. Phys.-Condes. Matter 2002,
14, L519.
212. Yamashita, Y.; Mukai, K.; Yoshinobu, J.; Lippmaa, M.; Kinoshita, T.; Kawasaki,
M., Chemical nature of nanostructures of La0.6Sr0.4MnO3 on SrTiO3(100). Surf.
Sci. 2002, 514, 54.
213. Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H., Synthesis of single-crystalline
perovskite nanorods composed of barium titanate and strontium titanate. J. Am.
Chem. Soc. 2002, 124, 1186.
214. Ma, X. Y.; Zhang, H.; Xu, J.; Niu, J. J.; Yang, Q.; Sha, J. A.; Yang, D. R.,
Synthesis of La1-xCaxMnO3 nanowires by a sol-gel process. Chem. Phys. Lett.
2002, 363, 579.
215. Limmer, S. J.; Seraji, S.; Wu, Y.; Chou, T. P.; Nguyen, C.; Cao, G. Z.,
Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv.
Funct. Mater. 2002, 12, 59.
216. Chu, S. Z.; Wada, K.; Inoue, S.; Todoroki, S., Synthesis and characterization of
titania nanostructures on glass by Al anodization and sol-gel process. Chem. Mat.
2002, 14, 266.
217. Limmer, S. J.; Seraji, S.; Forbess, M. J.; Wu, Y.; Chou, T. P.; Nguyen, C.; Cao, G.
Z., Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater. 2001,
13, 1269.
218. Tian, H. Y.; Luo, W. G.; Pu, X. H.; Ding, A. L., Synthesis and microstructure of
the acetate-based Sr-doped barium titanate thin films using a modified sol-gel
technique. Journal of Materials Science Letters 2000, 19, 1211.
219. Seraji, S.; Wu, Y.; Jewell-Larson, N. E.; Forbess, M. J.; Limmer, S. J.; Chou, T. P.;
Cao, G. Z., Patterned microstructure of sol-gel derived complex oxides using soft
lithography. Adv. Mater. 2000, 12, 1421.
220. Bohannan, E. W.; Jaynes, C. C.; Shumsky, M. G.; Barton, J. K.; Switzer, J. A.
Low-temperature electrodeposition of the high-temperature cubic polymorph of
bismuth(III) oxide. Solid State Ionics, 2000, 131, 97.
221. Switzer, J. A.; Shumsky, M. G.; Bohannan, E. W., Electrodeposited ceramic single
crystals. Science 1999, 284, 293.
222. Sapp, S. A.; Lakshmi, B. B.; Martin, C. R., Template synthesis of bismuth telluride
nanowires. Adv. Mater. 1999, 11, 402.
223. Magri, P.; Boulanger, C.; Lecuire, J. M., Synthesis, properties and performances of
electrodeposited bismuth telluride films. J. Mater. Chem. 1996, 6, 773.
224. Lin, Y. R.; Liu, Y. T.; Sodano, H. A., Hydrothermal synthesis of vertically aligned
lead zirconate titanate nanowire arrays. Appl. Phys. Lett. 2009, 95, 122901.
225. Rorvik, P. M.; Almli, A.; van Helvoort, A. T. J.; Holmestad, R.; Tybell, T.; Grande,
T.; Einarsrud, M. A., PbTiO3 nanorod arrays grown by self-assembly of
nanocrystals. Nanotechnology 2008, 19, 225605.
226. Hsu, L. C.; Li, Y. Y.; Lo, C. G.; Huang, C. W.; Chern, G., Thermal growth and
magnetic characterization of alpha-Fe2O3 nanowires. J. Phys. D-Appl. Phys. 2008,
41, 185003.
227. Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Zapien, J. A.; Lee, S. T.,
Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon
arrays. Adv. Mater. 2006, 18, 1527.
228. Alexe, M.; Hesse, D.; Schmidt, V.; Senz, S.; Fan, H. J.; Zacharias, M.; Gosele, U.,
Ferroelectric nanotubes fabricated using nanowires as positive templates. Appl.
Phys. Lett. 2006, 89, 172907.
229. Tang, Q.; Zhou, W. J.; Zhang, W.; Ou, S. M.; Jiang, K.; Yu, W. C.; Qian, Y. T.,
Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Crystal
Growth & Design 2005, 5, 147.
230. Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A., Controlled aqueous
chemical growth of oriented three-dimensional crystalline nanorod arrays:
Application to iron(III) oxides. Chem. Mat. 2001, 13, 233.
231. Yang, Y.; Wang, X. H.; Sun, C. K.; Li, L. T., Photoluminescence of ZnO
nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition. J. Appl.
Phys. 2009, 105, 094304.
232. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Guo, W.; Liu, Q. L.; Liang, J.
K.; Hong, M. C., A plasma sputtering decoration route to producing
thickness-tunable ZnO/TiO2 core/shell nanorod arrays. Nanotechnology 2009, 20,
285311.
233. Wang, M. L.; Huang, C. G.; Cao, Y. G.; Yu, Q. J.; Deng, Z. H.; Liu, Y.; Huang, Z.;
Huang, J. Q.; Huang, Q. F.; Guo, W.; Liang, J. K., Dye-sensitized solar cells based
on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl.
Phys. 2009, 42, 155104.
234. Kim, Y.; Kang, S. H., Aluminum-doped ZnO nanorod array by thermal diffusion
process. Mater. Lett. 2009, 63, 1065.
235. Jian, D.; Gao, P. X.; Cai, W. J.; Allimi, B. S.; Alpay, S. P.; Ding, Y.; Wang, Z. L.;
Brooks, C., Synthesis, characterization, and photocatalytic properties of
ZnO/(La,Sr)CoO3 composite nanorod arrays. J. Mater. Chem. 2009, 19, 970.
236. Cao, B. Q.; Zuniga-Perez, J.; Boukos, N.; Czekalla, C.; Hilmer, H.; Lenzner, J.;
Travlos, A.; Lorenz, M.; Grundmann, M., Homogeneous core/shell ZnO/ZnMgO
quantum well heterostructures on vertical ZnO nanowires. Nanotechnology 2009,
20, 305701.
237. Kawasaki, S.; Catalan, G.; Fan, H. J.; Saad, M. M.; Gregg, J. M.; Correa-Duarte,
M. A.; Rybczynski, J.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott1, J. F.,
Conformal oxide coating of carbon nanotubes. Appl. Phys. Lett. 2008, 92, 053109.
238. Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.;
Welland, M. E., A simple low temperature synthesis route for ZnO-MgO
core-shell nanowires. Nanotechnology 2008, 19, 465603.
239. Kawasaki, S.; Fan, H. J.; Catalan, G.; Morrison, F. D.; Tatsuta, T.; Tsuji, O.; Scott,
J. F., Solution-process coating of vertical ZnO nanowires with ferroelectrics.
Nanotechnology 2008, 19, 375302.
240. Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D., ZnO-TiO2 core-shell
nanorod/P3HT solar cells. Journal of Physical Chemistry C 2007, 111, 18451.
241. Viswanatha, R.; Chakraborty, S.; Basu, S.; Sarma, D. D., Blue-emitting
copper-doped zinc oxide nanocrystals. Journal of Physical Chemistry B 2006,
110, 22310.
242. Zhang, H.; Yang, D. R.; Ma, X. Y.; Que, D. L., A versatile solution route for
oxide/sulfide core-shell nanostructures and nonlayered sulfide nanotubes.
Nanotechnology 2005, 16, 2721.
243. Baik, J. M.; Lee, J. L., Fabrication of vertically well-aligned (Zn,Mn)O nanorods
with room temperature ferromagnetism. Adv. Mater. 2005, 17, 2745.
244. Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y.; Huang, C. J., Effect of Sn dopant on the
properties of ZnO nanowires. J. Phys. D-Appl. Phys. 2004, 37, 2274.
245. Hwang, J.; Min, B. D.; Lee, J. S.; Keem, K.; Cho, K.; Sung, M. Y.; Lee, M. S.;
Kim, S., Al2O3 nanotubes fabricated by wet etching of ZnO/Al2O3 core/shell
nanofibers. Adv. Mater. 2004, 16, 422.
246. Fujisawa, H.; Kuri, R.; Shimizu, M.; Kotaka, Y.; Honda, K., PbTiO3 and
Pb(Zr,Ti)O3-Covered ZnO Nanorods. Applied Physics Express 2009, 2, 055103.
247. Hirose, S.; Nakayama, A.; Niimi, H.; Kageyama, K.; Takagi, H., Resistance
switching and retention behaviors in polycrystalline La-doped SrTiO3 ceramics
chip devices. J. Appl. Phys. 2008, 104 , 053712.
248. Alivov, Y. I.; Agra, F.; Xiao, B.; Chevtchenko, S.; Morkoc, H.; Yoon, J. G.,
Structural Characteristics of Sputter-Deposited Pb(Zr,Ti)O3/ZnO Heterostructure
Films. J. Korean Phys. Soc. 2008, 53, 1982.
249. Lee, S. K.; Lee, W.; Alexe, M.; Nielsch, K.; Hesse, D.; Gosele, U., Well-ordered
large-area arrays of epitaxial ferroelectric (Bi, La)4Ti3O12 nanostructures
fabricated by gold nanotube-membrane lithography. Appl. Phys. Lett. 2005, 86,
152906.
250. Kohlstedt, H.; Pertsev, N. A.; Contreras, J. R.; Waser, R., Theoretical
current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B
2005,72, 125341.
251. Li, S.; Lin, Y. H.; Zhang, B. P.; Wang, Y.; Nan, C. W., Controlled Fabrication of
BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors.
J. Phys. Chem. C 2010, 11, 2903.
252. Li, S.; Lin,Y. H.;, Zhang, B. P.; Li,J. F.; Nan, C. W., BiFeO3/TiO2 core-shell
structured nanocomposites as visible-active photocatalysts and their optical
response mechanism J. Appl. Phys. 2009, 105, 054310.
253. Li, C. Y.; Liu, B.; Zhao, J. P.; Wang, J. F.; Hu, B. B.; Du, Z. L., Synthesis and
characterization of BiFeO3 nanotube arrays and Y-junction BiFeO3 nanotubes.
Chin. Sci. Bull. 2009, 54, 719.
254. Wei, H.; Xue, D. S.; Xu, Y., Photoabsorption characterization and magnetic
property of multiferroic BiFeO3 nanotubes synthesized by a facile sol-gel template
process. Scr. Mater. 2008, 58, 45.
255. Cho, C. M.; Noh, J. H.; Cho, I. S.; An, J. S.; Hongw, K. S., Low-Temperature
Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and
Their Applications as Visible-Light Photocatalysts. J. Am. Ceram. Soc., 2008, 91,
3753.
256. Xu, X. Q.; Qian, T.; Zhang, G. Q.; Zhang, T.; Li, G.; Wang, W.; Li, X. G.,
Fabrication and magnetic properties of multiferroic BiFeO3 nanotube arrays.
Chem. Lett. 2007, 36, 112.
257. Liu, Y.; Miao, H. Y.; Zhu, G. Q.; Tan, G. Q., Synthesis and characterization
well-aligned bismuth ferrite nanowires using hydrothermal method. Rare Metal
Mat. Eng. 2007, 36, 243.
258. Zhan Q, Y. R., Crane SP, Structure and interface chemistry of perovskite-spinel
nanocomposite thin films Appl. Phys. Lett. 2006, 89, 172902.
259. Han, J. H.; Yuang, Y. H.; Wu, X. J.; Wu, C. L.; Wei, W, Peng, B.; Huang,;
Goodenough, J. B., Tunable Synthesis of Bismuth Ferrites with Various
Morphologies. Advanced Materials 2006, 18, 2145.
260. Zhang, X. Y.; Lai, C. W.; Zhao, X.; Wang, D. Y.; Dai, J. Y., Synthesis and
ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett.
2005, 87, 143102.
261. Zhang, X. Y.; Dai, J. Y.; Lai, C. W. Synthesis and characterization of highly
ordered BiFeO3 multiferroic nanowire arrays. Prog. Solid State Chem. 2005, 33,
147.
262. Lee, Y. H.; Wu, J. M.; Chen, Y. C.; Lu, Y. H.; Lin, H. N., Surface chemistry and
nanoscale characterizations of multiferroic BiFeO3 thin films Electrochem.
Solid-State Lett. 2005, 8, F43.
263. Fujisawa, H.; Seioh, Y.; Kume, M.; Shimizu, M., Epitaxial Growth and
Ferroelectric Properties of PbTiO3 Nanoislands and Thin Films Grown on
Single-Crystalline Pt Films. Jpn. J. Appl. Phys., 2008, 47, 7505.
264. Hsieh, Y. P.; Chen, H. Y.; Lin, M. Z.; Shiu, S. C.; Hofmann, M.; Chern, M. Y.; Jia,
X. T.; Yang, Y. J.; Chang, H. J.; Huang, H. M.; Tseng, S. C.; Chen, L. C.; Chen, K.
H.; Lin, C. F.; Liang, C. T.; Chen, Y. F., Electroluminescence from
ZnO/Si-Nanotips Light-Emitting Diodes. Nano Lett. 2009, 9, 1839.
265. Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M., Single
crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 2004, 4,
1247.
266. Sakurai, M.; Wang, Y. G.; Uemura, T.; Aono, M., Electrical properties of
individual ZnO nanowires. Nanotechnology 2009, 20, 155203.
267. Lin, Y. F.; Jian, W. B., The Impact of Nanocontact on Nanowire Based
Nanoelectronics. Nano Lett. 2008, 8, 3146.
268. Park, W. I.; Yi, G. C.; Kim, J. W.; Park, S. M., Schottky nanocontacts on ZnO
nanorod arrays. Appl. Phys. Lett. 2003, 82, 4358.
269. Heo, Y. W.; Tien, L. C.; Norton, D. P.; Pearton, S. J.; Kang, B. S.; Ren, F.;
LaRoche, J. R., Pt/ZnO nanowire Schottky diodes. Appl. Phys. Lett. 2004, 85,
3107.
270. Seong, H.; Yun, J.; Jun, J. H.; Cho, K.; Kim, S., The transfer of charge carriers
photogenerated in ZnO nanoparticles into a single ZnO nanowire. Nanotechnology
2009, 20, 245201.
271. Piechal, B.; Yoo, J.; Elshaer, A.; Mofor, A. C.; Yi, G. C.; Bakin, A.; Waag, A.;
Donatini, F.; Dang, L. S. Cathodoluminescence of single ZnO nanorod
heterostructures, phys. stat. sol. b 2007, 244,1458.
272. Volk, J.; Nagata, T.; Erdelyi, R.; Barsony, I.; Toth, A. L.; Lukacs, I. E.; Czigany,
Z.;Tomimoto, H.; Shingaya, Y.; Chikyow, T., Highly Uniform Epitaxial ZnO
Nanorod Arrays for Nanopiezotronics. Nanoscale Res. Lett. 2009, 4, 699.
273. Zhang, N.; Yu, K.; Li, L. J.; Zhu, Z. Q., Investigation of electrical and ammonia
sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO
nanorod. Appl. Surf. Sci. 2008, 254, 5736.
274. Rakhshani, A. E., Schottky diodes on ZnO rods grown homoepitaxially by
successive chemical solution deposition. Semicond. Sci. Technol. 2008, 23,
075037.
275. Liao, Z. M.; Lv, Z. K.; Zhou, Y. B.; Xu, J.; Zhang, J. M.; Yu, D. P., The effect of
adsorbates on the space-charge-limited current in single ZnO nanowires.
Nanotechnology 2008, 19, 4.
276. Lao, C. S.; Liu, J.; Gao, P. X.; Zhang, L. Y.; Davidovic, D.; Tummala, R.; Wang,
Z.L., ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis
alignment across Au electrodes. Nano Lett. 2006, 6, 263.
277. Wang, X. D.; Summers, C. J.; Wang, Z. L., Self-attraction among aligned Au/ZnO
nanorods under electron beam. Appl. Phys. Lett. 2005, 86, 013111.
278. Park, W. I.; Kim, J. S.; Yi, G. C.; Lee, H. J., ZnO nanorod logic circuits. Adv.
Mater. 2005, 17, 1393.
279. Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M., Rectifying
behavior of electrically aligned ZnO nanorods. Nano Lett. 2003, 3, 1097.
280. Schroeder, R.; Majewski, L. A.; Grell, M., All-organic permanent memory
transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv.
Mater. 2004, 16, 633.
281. Naber, R. C. G.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M., Low-voltage
polymer field-effect transistors for nonvolatile memories. Appl. Phys. Lett. 2005,
87, 203509.
282. Singh, T. B.; Marjanovic, N.; Matt, G. J.; Sariciftci, N. S.; Schwodiauer, R.; Bauer,
S., Nonvolatile organic field-effect transistor memory element with a polymeric
gate electret. Appl. Phys. Lett. 2004, 85, 5409.
283. Chang , W. Y.; Lin, C. A.; He, J. H.; Wu, T. B., Resistive switching behaviors of
ZnO nanorod layers. Appl. Phys. Lett. 2010, 96, 242109.
284. Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F., Fully
Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and
High-Density Memory Application. Nano Lett. 2009, 9, 1636.
285. Son, D. I.; Park, D. H.; Choi, W. K.; Cho, S. H.; Kim, W. T.; Kim, T. W., Carrier
transport in flexible organic bistable devices of ZnO nanoparticles embedded in an
insulating poly(methyl methacrylate) polymer layer. Nanotechnology 2009, 20,
195203.
286. Ya Yang, J. Q., Qingliang Liao, Huifeng Li, Yishu Wang,Lidan Tang and Yue
Zhang, High-performance piezoelectric gate diode of a single polar-surface
dominated ZnO nanobelt. Nanotechnology 2009, 20, 125201.
287. Vo¨lkel, A. R. ; Street, R. A.; Knipp, D., Carrier transport and density of state
distributions in pentacene transistors. Phys. Rev. B 2002, 66, 195336.
288. Dawber, M.; Rabe, K. M.; Scott, J. F., Physics of thin-film ferroelectric oxides.
Rev. Mod. Phys. 2005, 77, 1083.
289. Bernardini, F.; Fiorentini, V., Electronic dielectric constants of insulators
calculated by the polarization method. Phys. Rev. B 1998, 58, 15292.
290. Oh, D. C.; Kim, J. J.; Makino, H.; Hanada, T.; Cho, M. W.; Yao, T.; Ko, H. J.,
Characteristics of Schottky contacts to ZnO : N layers grown by molecular-beam
epitaxy. Appl. Phys. Lett. 2005, 86, 042110.
291. Ip, K.; Heo, Y. W.; Baik, K. H.; Norton, D. P.; Pearton, S. J.; Kim, S.; LaRoche, J.
R.; Ren, F., Temperature-dependent characteristics of Pt Schottky contacts on
n-type ZnO. Appl. Phys. Lett. 2004, 84, 2835.
292. Cheng, K.; Cheng, G.; Wang, S. J.; Li, L. S.; Dai, S. X.; Zhang, X. T.; Zou, B. S.;
Du, Z. L., Surface states dominative Au Schottky contact on vertical aligned ZnO
nanorod arrays synthesized by low-temperature growth. New J. Phys. 2007, 9,
214.
293. Zhang, Z. Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M., Current-voltage
characteristics and parameter retrieval of semiconducting nanowires. Appl. Phys.
Lett. 2006, 88, 073102.
294. Coppa, B. J.; Davis, R. F.; Nemanich, R. J., Gold Schottky contacts on oxygen
plasma-treated, n-type ZnO(000(1)over-bar). Appl. Phys. Lett. 2003, 8,
400.
295. Liao, Z. M.; Liu, K. J.; Zhang, J. M.; Xu, J.; Yu, D. P., Effect of surface states on
electron transport in individual ZnO nanowires. Phys. Lett. A 2007, 367, 207.
296. Qiao, L.; B, X., Effect of substrate temperature on the microstructure and transport
properties of highly (100)-oriented LaNiO3 films by pure argon sputtering. J.
Cryst. Growth 2008, 310, 3653.
297. Ueno, K.; Yamaguchi, T.; Sakamoto, W.; Yogo, T.; Kikuta, K.; Hirano, S. I.,
Orientation control of chemical solution deposited LaNiO3 thin films. Thin Solid
Films 2005, 491, 78.
298. Zhang, S. T.; Tan, W. S.; Yuan, G. L.; Zhang, X. J.; Cheng, H. W.; Chen, Y. F.; Liu,
Z. G.; Ming, N. B. Fabrication and electrical properties of
LaNiO3/Pb(Zr0.61Ti0.39)O3/LaNiO3/LaAlO3 all-perovskite heterostructures,
Microelectron. Eng. 2003, 66, 701.
299. Zou, Q.; Ruda, H. E.; Yacobi, B. G., Improved dielectric properties of lead
zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers.
Appl. Phys. Lett. 2001, 78, 1282.
300. Yang, C. C.; Chen, M. S.; Hong, T. J.; Wu, C. M.; Wu, J. M.; Wu, T. B.,
Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by
radio-frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3
. Appl. Phys. Lett. 1995, 66, 2643.
301. Satyalakshmi, K. M.; Mallya, R. M.; Ramanathan, K. V.; Wu, X. D.; Brainard, B.;
Gautier, D. C.; Vasanthacharya, N. Y.; Hegde, M. S., Epitaxiall metallic LaNiO,
thin films grown by pulsed laser deposition. Appl. Phys. Lett. 1992, 62, 1233.
302. Na, S. H.; Park, C. H., First-Principles Study of the Surface Energy and the Atom
Cohesion of Wurtzite ZnO and ZnS - Implications for Nanostructure Formation. J.
Korean Phys. Soc. 2010, 56, 498.
303. Sosnowska, I.; Peterlinneumaier, T.; Steichele, E., Spiral magnetic-ordering
bismuth ferrite. Journal of Physics C-Solid State Physics 1982, 15, 4835.
304. Strohmeier, B. R.; Hercules, D. M., Surface spectroscopic characterization of the
interaction between zinc ions and gamma-alumina. J. Catal. 1984, 86, 266.
305. Lupan,O.; Emelchenko, G. A.;Ursaki, V. V.;Chai, G.; Redkin, A. N.; Gruzintsev,
A. N.; Tiginyanu, I. M.; Chow, L.; Ono, L. K.; Cuenya, B. R.; Heinrich, H.;
Yakimov, E. E., Synthesis and characterization of ZnO nanowires for nanosensor
applications. Mater. Res. Bull. 2010, 45, 1026.
306. Ghoshal, T.; Biswas, S.; Kar, S.; Dev, A.; Chakrabarti, S.; Chaudhuri, S., Direct
synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation
process. Nanotechnology 2008, 19, 065606.
307. Kim, J. S.; Yang, C. H.; Yoon, S. G.; Choi, W. Y.; Kim, H. G., The low
temperature processing for removal of metallic bismuth in ferroelectric
SrBi2Ta2O9 thin films. Appl. Surf. Sci. 1999, 140, 150.
308. Asami, K.; Osaka, T.; Yamanobe, T.; Koiwa, I., Metallic bismuth on
strontium-bismuth tantalate thin films for ferroelectric memory application. Surf.
Interface Anal. 2000, 30, 391.
309. Lee, Y. H.; Wu, J. M., Epitaxial growth of LaFeO3 thin films by RF magnetron
sputtering. J. Cryst. Growth 2004, 263, 436.
310. Wu, J. G.; Lou, X. J.; Wang, Y.; Wang, J., Resistive Hysteresis and Diodelike
Behavior of BiFeO3/ZnO Heterostructure. Electrochem. Solid-State Lett. 2010, 13,
G9.