簡易檢索 / 詳目顯示

研究生: 李彥毅
Li, Yen-Yi
論文名稱: 利用適應性合成漣波的快速暫態響應磁滯降壓式轉換器
A Fast Response Hysteresis Buck Converter With Adaptive Synthetic Ripple Modulator
指導教授: 周懷樸
Chou, Hwai-Pwu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 降壓式轉換器磁滯控制快速暫態響應動態磁滯帶適應性合成漣波
外文關鍵詞: buck converter, hsteresis control, fast response, dynamic hysteresis band, adaptive synthetic ripple modulator
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一種快速暫態響應之磁滯降壓式轉換器,加入具有動態磁滯帶的適應性漣波合成技術可達到較佳的暫態響應速度和轉換效率。適應性合成漣波技術提供一個可依負載條件做調整的鋸齒波訊號,磁滯帶(hysteresis band)寬度亦可依不同負載進行變換。本論文之降壓轉換器進一步的加入不連續導通模式運作,如此可提高輕載時的轉換效率。全電路使用TSMC 0.35μm 2P4M CMOS製程技術實現,全電路模擬結果顯示當負載由80mA 至600mA回復時間低於13微秒內,且在輸入電壓範圍2.7V~4.5V,轉換效率可達90%。


    A fast response hysteresis buck converter is presented in this thesis. The adaptive synthetic ripple modulation (SRM) technique is combined with dynamic hysteresis band to achieve better transient response as well as conversion efficiency. The adaptive SRM provides a saw tooth waveform with the slope adjusted according to load conditions. The hysteresis band and thus the switching frequency are also adjusted automatically according to load conditions. The buck converter is further put into the discontinuous-conduction mode (DCM) for better conversion efficiency at light load conditions. The circuits are implemented using a standard TSMC 2P4M 0.35μm CMOS process. The design has the output recovery time less than 13μs for load transient between 80mA and 600mA. The efficiency is 90% for operation voltage range from 2.7V to 4.5V under both light and heavy load conditions.

    中文摘要………………………………………………………………………………………i 英文摘要………………………………………………………………………………………ii 誌謝…………………………………………………………………………………………iii 目錄…………………………………………………………………………………………iv 表目錄………………………………………………………………………………………vii 圖目錄………………………………………………………………………………………viii 第一章 緒論…………………………………………………………………………………1 1.1 研究背景…………………………………………………………………………2 1.2 研究動機與目的…………………………………………………………………3 1.3 論文架構…………………………………………………………………4 第二章 文獻回顧………………………………………………………………………5 2.1 電壓模式直流對直流切換式穩壓器之拓樸結構………………………………5 2.2 同步降壓穩壓器………………………………………………………………6 2.3 連續導通模式……………………………………………………………………8 2.3.1 連續導通模式之直流電壓轉換……………………………………………8 2.3.2 連續導通模式之小訊號模型……………………………………………11 2.4 非連續導通模式………………………………………………………………13 2.4.1 非連續導通模式之直流電壓轉換………………………………………13 2.4.2 非連續導通模式之小訊號模型…………………………………………16 2.5 脈寬調變(pulse-width modulation, PWM)控制……………………………18 2.5.1 電壓模式之PWM…………………………………………………………19 2.5.2 電流模式之PWM…………………………………………………………21 2.6 PWM磁滯控制系統……………………………………………………………23 2.7 合成漣波控制…………………………………………………………………26 第三章 電路架構之設計原理……………………………………………………………28 3.1 電路架構與運作流程 …………………………………………………………28 3.2 輸出元件之選擇 ………………………………………………………………31 第四章 電路實現與模擬…………………………………………………………………32 4.1 子電路設計 ……………………………………………………………………32 4.1.1 帶差參考電路……………………………………………………………32 4.1.2 誤差放大器………………………………………………………………36 4.1.3 磁滯比較器………………………………………………………………38 4.1.4 電流偵測電路……………………………………………………………42 4.1.5 緩啟動電路………………………………………………………………45 4.2 適應性漣波合成器 ……………………………………………………………46 4.3 動態磁滯帶產生器 ……………………………………………………………51 4.4 快速暫態響應電路 ……………………………………………………………52 4.5 驅動級電路 ……………………………………………………………………55 4.5.1 錯置時間(dead-time)控制………………………………………………55 4.5.2 緩衝器……………………………………………………………………58 第五章 模擬結果、佈局與量測……………………………………………………………60 5.1 全電路模擬 ……………………………………………………………………60 5.2 電路佈局 ………………………………………………………………………65 5.3 量測考量與環境 ………………………………………………………………67 第六章 結論與建議 ………………………………………………………………………70 6.1 結論 ……………………………………………………………………………70 6.2 建議 ……………………………………………………………………………70 參考文獻 ……………………………………………………………………………………72

    [1] J. Abu-Qahouq, H. Mao, and I. Baterseh, “Multiphase voltage-mode hysteretic controlled dc-dc converter with novel current sharing,” IEEE Trans. Power Electron., vol. 19, no.6, pp. 1397-1407, Nov. 2004.
    [2] K.D.T. Ngo, S. K. Mishra, and M. Walters, “Dynamic characterization of the synthetic ripple modulator in a tightly regulated distributed power application,” IEEE Trans. of Industrial Electron., vol. 56, no. 4, pp. 1164-1173, Apr. 2009.
    [3] S.K. Mishra and K.D.T. Ngo, “Synthetic ripple modulator for synchronous buck converter,” IEEE PE Lett., vol. 3, no. 6, pp. 148-151, Dec. 2005.
    [4] C.T. Tsai and H.P. Chou, “A synthetic ripple buck converter with dynamic hysteretic band modulation” in Proc. IEEE PEDS’09 Conf., pp. 170-174, 2009
    [5] R. Miftakhutdinov , “Analysis and optimization of synchronous buck converter at high slew-rate load current transients,” Power Electronics Specialists Conf., vol. 2, June 2000.
    [6] Zaohong Yang and P.C. Sen, “DC to DC buck converter with novel current mode control,” Power Electronics Specialists Conf., vol. 2, June 1999.
    [7] O. Djekic, M. Brkovic, and A. Roy,” High frequency synchronous buck converter for low voltage applications,” Power Electronics Specialists Conf.,vol. 2, May 1998.
    [8] M. Bartoli, A. Reatti, and M.K. Kazimierczuk, ” Open loop small-signal control-to-output transfer function of PWM buck converter for CCM: modeling and measurements,” Electrotechnical Conf., 1996 MELECON 8th Mediterranean,vol. 3, May 1996.
    [9] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA, Kluwer, 2001
    [10] Y. S. Lee, S. J. Wang, and S. Y. R. Hui, “Modeling, analysis and applications of buck converters in discontinuous input-voltage-mode operation,” IEEE Trans. on Power Electron., vol. 12, no. 2, March 1997.
    [11] A. F. Witulski, ”Buck converter small-signal models and dynamics: comparison of quasi-resonant and pulse width modulated switches,” IEEE Trans. on Power Electron., vol. 6, no. 4, October 1991.
    [12] R. D. Middlebrook, “Small-signal modeling of pulse-width modulated switched-mode power converters,” Proceedings of the IEEE, vol. 76, no. 4, April 1988.
    [13] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, ”Modeling of PWM converters in discontinuous conduction mode. A reexamination,” Power Electronics Specialists Conf., vol. 1, May 1998.
    [14] H. H. Huang, C.L. Chen, and K.H. Chen, “Adaptive window control(AWC) technique for hysteresis dc-dc buck converters with improved light and heavy load performance,” IEEE Trans. of Power Electron., vol. 24, no. 6, pp. 1607-1617, Jun. 2009.
    [15] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, June 2002
    [16] Johns Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997
    [17] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2nd ed., Oxford, New York, 2002
    [18] W. H. Ki, “Current sensing technique using MOS transistor scaling with matched bipolar current sources,” U.S Patent 5,757,174 May 26 1998
    [19] C.F.Lee and P.K.T. Mok ”A monolithic current-mode CMOS dc-dc converter with on-chip current sensing technique,” IEEE J. of Solid-State Circuits, vol. 39, no. 1, pp.3-14, Jan. 2004
    [20] C. Y. Leung, P.K.T. Mok, and K. N. Leung “A 1.2V buck converter with a novel on-chip low-voltage current-sensing scheme,” IEEE ISCAS, vol. 5, pp. 824-827 May 2004
    [21] C. H. Chang and Robert C. Chang, “A novel current sensing circuit for a current-mode control CMOS dc-dc buck converter,” IEEE VLSI-TSA International Symposium on VLSI Design, Automation & Test, pp. 120-123, April 2005
    [22] 柯欣欣,「使用高精準度電流偵測技巧之高轉換效能同步互補式CMOS切換式穩壓器」,國立中央大學電機工程研究所,碩士論文,中華民國九十六年。
    [23] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Variable supply-voltage scheme for low-power high-speed CMOS digital design,” IEEE J. of Solid-State Circuits, vol. 33, no. 3, 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE