簡易檢索 / 詳目顯示

研究生: 郭彥廷
Kuo, Yen-Ting
論文名稱: 鋰原子D1譜線超精細結構和同位素偏移的精密量測
Precision Measurement of Hyperfine Intervals and Isotope Shift of D1 lines of Atomic Lithium
指導教授: 王立邦
Wang, Li-Bang
口試委員: 劉怡維
Liu, Yi-Wei
崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 42
中文關鍵詞: 光譜超精細結構
外文關鍵詞: spectroscopy, lithium, hyperfine structure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用交叉原子束法測量鋰原子6,7Li的D1譜線的超精細結構和同位素偏移。我們的光譜雷射是波長為670.9 nm的外腔式二極體雷射,並將雷射用Pound-Drever-Hall技術穩頻在Fabry-Perot干涉共振腔上,並且藉由改變共振腔腔長掃描鋰原子光譜。參考頻率雷射則是鎖在碘分子的譜線上。利用光電倍增管偵測雷射激發的原子螢光訊號,並記錄光譜雷射和參考雷射的拍頻做為訊號的頻率。

    我們的實驗結果6,7Li在基態2S1/2的超精細結構分裂為228.198 (12) MHz和 803.495 (8) MHz,在第一激發態2P1/2超精細結構分裂為26.108 (9) MHz和 91.873 (5) MHz。而6,7Li 之間的同位素偏移為10533.800 (15) MHz。我們的量測釐清了不同團隊量測結果的爭議,並且與大部分的理論預測相符。


    We have precisely measured the hyperfine intervals and isotope shift of D1 lines of atomic lithium 6,7Li in a collimated atomic beam. The spectroscopy laser, an external-cavity diode laser (ECDL) with wavelength 670.9 nm, which is locked to a Fabry-Perot cavity by Pound-Drever-Hall technique, scans the spectrums by changing the cavity length. The reference laser is locked to molecular iodine transition. The laser-induced fluorescence signal is detected by photomultiplier, and the beat frequency between spectroscopy laser and reference laser is recorded.

    The results of 6,7Li for 2S1/2 hyperfine interval are 228.198 (12) MHz and 803.495(8) MHz. For 2P1/2 hyperfine interval, they are 26.108(9) MHz and 91.873(5) MHz. The isotope shift is 10533.800(15) MHz. Our results resolve the discrepancies between former measurements, and are consistent with most theoretical calculations.

    1. Introduction 1 2. Theory 2.1 Fine Structure 2.2 Hyperfine Structure 2.3 Isotope Shift 3. Experiment 3.1 Light Source and Frequency Stabilization 3.2 Lithium Atomic Beam 3.3 Fluorescence Detection 4. Results and Discussion 4.1 Data Analysis 4.2 Result of this Work 4.3 Systematic Error Analysis 4.4 Comparison with Previous Results 5 Conclusion 6 Bibliography

    [1] Walls, J., et al., Measurement of isotope shifts, fine and hyperfine structure splittings of the lithium D lines. The European Physical Journal D, 2003. 22(2): p. 159-162.
    [2] Noble, G., et al., Isotope shifts and fine structures of 6,7Li D lines and determination of the relative nuclear charge radius. Physical Review A, 2006. 74(1): p. 012502.
    [3] Das, D. and V. Natarajan, Absolute frequency measurement of the lithium D lines: Precise determination of isotope shifts and fine-structure intervals. Physical Review A, 2007. 75(5): p. 052508.
    [4] Das, D. and V. Natarajan, High-precision measurement of hyperfine structure in the D lines of alkali atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008. 41(3): p. 035001.
    [5] Sansonetti, C., et al., Absolute Transition Frequencies and Quantum Interference in a Frequency Comb Based Measurement of the 6,7Li D Lines. Physical Review Letters, 2011. 107(2): p. 023001.
    [6] Yerokhin, V., Hyperfine structure of Li and Be+. Physical Review A, 2008. 78(1): p. 012513.
    [7] Puchalski, M. and K. Pachucki, Fine and hyperfine splitting of the 2P state in Li and Be+. Physical Review A, 2009. 79(3): p. 032510.
    [8] Orth, H., H. Ackermann, and E. Otten, Fine and Hyperfine Structure of the 2 2P Term of 7Li; Determination of the Nuclear Quadrupole Moment. Z. Physik A, 1975. 273(3): p. 221-232.
    [9] Singh, A., L. Muanzuala, and V. Natarajan, Precise measurement of hyperfine structure in the 2P1/2 state of 7Li using saturated-absorption spectroscopy. Physical Review A, 2010. 82(4): p. 042504.
    [10] Huang, Y., et al., Precision measurement of hyperfine intervals in the D1 lines of atomic 7Li. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013. 46(7): p. 075004.
    [11] Sansonetti, C., et al., Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency-modulation spectroscopy. Physical Review A, 1995. 52(4): p. 2682-2688.
    [12] Scherf, W., et al., Re-measurement of the transition frequencies, fine structure splitting and isotope shift of the resonance lines of lithium, sodium and potassium. Z. Physik, 1996 36(1): p. 31-33.
    [13] Shankar, R., Principles of Quantum Mechanics. 1994: Plenum Press.
    [14] Metcalf, H. and P. Straten, Laser Cooling and Trapping. 1999: Springer.
    [15] Foot, C., Atomic Physics. 2005: Oxford University Press.
    [16] Puchalski, M., D. Kędziera, and K. Pachucki, D1and D2 lines in 6Li and 7Li including QED effects. Physical Review A, 2013. 87(3): p. 032503.
    [17] Demtröder, W., Laser Spectroscopy. Forth ed. Vol. 2. 2008: Springer.
    [18] Beckmann, A., K. Boklen, and D. Elke, Precision Measurements of the Nuclear Magnetic Dipole Moments of 6Li, 7Li, 23Na, 39K and 41K. Z. Physik, 1974. 270(3): p. 173-186.
    [19] De Jager, C.W., H. De Vries, and C. De Vries, Nuclear charge- and magnetization-density-distribution parameters from elastic electron scattering. Atomic Data and Nuclear Data Tables, 1974. 14(5–6): p. 479-508.
    [20] Riis, E., et al., Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment. Physical Review A, 1994. 49(1): p. 207-220.
    [21] Windholz, L., et al., Laser-spectroscopic investigations of the lithium-D-lines in magnetic fields. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1990. 16(1): p. 41-47.
    [22] Bushaw, B., et al., Hyperfine splitting, isotope Shift, and level energy of the 3S States of 6,7Li. Physical Review Letters, 2003. 91(4): p. 043004.
    [23] Brown, R., et al., Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the 6,7Li D2 lines. Physical Review A, 2013. 87(3): p. 032504.
    [24] Ewald, G., et al., Nuclear Charge Radii of 8,9Li Determined by Laser Spectroscopy. Physical Review Letters, 2004. 93(11): p. 113002.
    [25] Sánchez, R., et al., Nuclear Charge Radii of 9,11Li: The Influence of Halo Neutrons. Physical Review Letters, 2006. 96(3): p. 033002.
    [26] Sánchez, R., et al., Absolute frequency measurements on the 2S→3S transition of lithium-6,7. New Journal of Physics, 2009. 11(7): p. 073016.
    [27] Nörtershäuser, W., et al., Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination. Physical Review A, 2011. 83(1): p. 012516.
    [28] Lien, Y., et al., Absolute frequencies of the 6,7Li 2S 2S1/2→3S 2S1/2 transitions. Physical Review A, 2011. 84(4): p. 042511.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE