簡易檢索 / 詳目顯示

研究生: 黃志中
Huang, Jhih-Jhong
論文名稱: 金山核電廠TRACE/PARCS模式之圍阻體系統及爐心中子動力學拓展與應用
The Development and Application of Containment System and Core Neutron Kinetics for Chinshan Nuclear Power Plant TRACE/PARCS Model
指導教授: 陳紹文
Chen, Shao-Wen
王仲容
Wang, Jong-Rong
口試委員: 廖俐毅
Liao, Lih-Yih
施純寬
Shih, Chunkuan
林浩慈
Lin, Hao-Tzu
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 267
中文關鍵詞: TRACEPARCSCONTAN金山核電廠電廠全黑喪失冷卻水事件斷然處置措施
外文關鍵詞: TRACE, PARCS, CONTAN, Chinshan Nuclear Power Plant, SBO, LOCA, URG
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TRACE是一個強而有力的核電廠安全分析程式,目前的金山核電廠TRACE模式,經驗證後已可應用於相當多的安全分析上,但是主要都是在爐心熱流的安全分析。因此,本論文的研究方向是將目前金山核電廠TRACE模式分析計算發展至下游的圍阻體系統分析及上游的中子動力學計算。
    下游方向發展至圍阻體分析方面,發展金山核電廠TRACE/CONTAN模式,將爐心熱流分析的TRACE結合圍阻體分析的組件CONTAN,以進行爐心熱流及圍阻體系統同步計算分析。本研究已應用TRACE/CONTAN模式進行LOCA、SBO 24小時及URG的分析。其中LOCA事故分析顯示TRACE/CONTAN模式與FSAR及GOTHIC程式分析結果比較,可以獲得令人滿意的分析結果。SBO 24小時事故分析顯示,比較TRACE/CONTAN模式與RETRAN-02加上SHEX的分析結果,兩者也十分吻合。金山核電廠的TRACE/CONTAN模式進行URG分析的結果顯示,URG的兩階段降壓策略,較直接作緊急降壓,可更有效降低事故過程的燃料護套尖峰溫度,所需的最小替代注水量也遠低於直接作緊急降壓。
    上游方向拓展至中子動力學計算方面,發展金山核電廠TRACE/PARCS模式,將爐心熱流分析的TRACE結合反應爐爐心模擬器PARCS,以進行爐心熱流及爐心中子熱力學同步計算分析,本研究已利用電廠啟動測試資料的暫態案例,進行金山核電廠TRACE/PARCS模式的驗證,驗證分析包括六項啟動測試暫態分析,模擬結果顯示TRACE/PARCS模式可以良好的分析金山核電廠的啟動測試暫態,並且具備一定的準確度。金山核電廠TRACE/PARCS模式進一步應用於控制棒擾動穩定性模擬上,由模擬的結果可明顯的觀察到功率以及燃料組件內流量的震盪,並驗證爐心系統的穩定性。


    TRACE is a thermal-hydraulic analysis code for reactor safety. The current Chinshan NPP TRACE model has been verified and can be applied to safety analysis for the reactor coolant system. Therefore, this research attempts to extend the applications of the Chinshan NPP TRACE model to the containment system analysis and the neutron kinetic calculation.
    The downstream direction is extended to the analysis of the containment system, so the TRACE/CONTAN model of Chinshan NPP was developed. The TRACE, a reactor coolant system analysis code, was combined with the CONTAN, a special module for the containment system analysis, to perform the real-time calculation. In this study, the TRACE/CONTAN model has been used to analyze LOCA, SBO 24 hours, and URG. The result of LOCA accident analysis shows that the TRACE/CONTAN mode can obtain satisfactory analysis results. The result of the SBO 24 hours accident analysis showed that comparing the TRACE/CONTAN with the analysis results of RETRAN/SHEX is also very consistent. The results of URG analysis in the TRACE/CONTAN model of Chinshan NPP show that URG’s two-stage depressurization strategy is safer than one-stage emergency depressurization, which can more effectively reduce the peak temperature of the fuel cladding during the accident and the minimum requirement of alternative water injection.
    The upstream direction is extended to the calculation of neutron kinetics, the TRACE/PARCS model of Chinshan NPP is developed, and the TRACE of the reactor coolant system analysis is combined with the reactor core simulator PARCS to perform real-time calculation and analysis of the reactor coolant system and the neutron kinetics of the reactor core. This study has used the transient case of power plant start-up test data to verify the TRACE/PARCS model of Chinshan NPP. The verification analysis includes six transient analyses of start-up tests. The simulation results show that the TRACE/PARCS model can well analyze the transients of start-up test in Chinshan NPP’s, and achieve a certain degree of accuracy. The TRACE/PARCS model of Chinshan Nuclear Power Plant is further applied to the simulation of control rod perturbance stability. In the results of the simulation, the oscillation of power and flow in the fuel assembly can be observed, and the stability of core system could be approved.

    中文摘要 i 英文摘要 iii 誌 謝 v 目 錄 vii 附表目錄 xi 附圖目錄 xiii 專有名詞 xxi 第一章 前言 1 第二章 文獻回顧 5 第三章 金山核電廠簡介 11 3.1 反應爐壓力槽 11 3.2 再循環管路系統 12 3.3 汽水分離器與蒸汽乾燥器 13 3.4 爐心燃料 14 3.5 主蒸汽供給系統 14 3.6 緊急爐心冷卻系統 15 3.7 圍阻體 15 第四章 分析程式簡介 27 4.1 圖形化使用者介面程式SNAP簡介 27 4.2 熱水流分析程式TRACE簡介 31 4.2.1 反應爐壓力槽組件VESSEL簡介 32 4.2.2 核子燃料組件CHAN簡介 34 4.2.3 圍阻體組件CONTAN簡介 37 4.2.4 統御方程式及重要熱水流現象 39 4.3 爐心模擬程式PARCS簡介 54 第五章 金山核電廠TRACE及PARCS模式建置與穩態分析 59 5.1 資料蒐集及分類 59 5.1.1 熱水流幾何資料 59 5.1.2 反應爐壓力槽和內部組件資料 60 5.1.3 熱結構資料 61 5.1.4 控制系統資料 62 5.1.5 初始條件和邊界條件資料 63 5.2 模式建立步驟 64 5.2.1 定義組件 64 5.2.2 建置網格節點 65 5.2.3 摩擦損失 66 5.2.4 重要熱水流現象設定 66 5.2.5 註解與ID編碼 66 5.2.6 模式除錯 67 5.3 金山核電廠TRACE模式的建立 68 5.3.1 反應爐壓力槽 68 5.3.2 再循環系統 69 5.3.3 汽水分離器與蒸汽乾燥器 69 5.3.4 爐心燃料 70 5.3.5 蒸汽供應系統 70 5.3.6 閥門 71 5.3.7 控制系統 71 5.3.8 爐心功率(中子動力源) 72 5.3.9 金山核電廠圍阻體模式的建立 72 5.3.10 反應爐冷卻水系統與圍阻體系統的整合 73 5.4 金山核電廠PARCS模式的建立 84 5.4.1 金山核電廠反應爐爐心PARCS模式的建立 84 5.4.2 金山核電廠TRACE/PARCS模式的耦合 85 5.5 金山核電廠TRACE與PARCS模式的穩態計算 92 5.5.1 TRACE模式穩態分析 92 5.5.2 TRACE/CONTAN模式穩態分析 92 5.5.3 TRACE/PARCS模式的穩態分析 93 第六章 金山核電廠TRACE圍阻體模式相關分析 101 6.1 喪失冷卻水事件暫態響應分析 101 6.1.1 喪失冷卻水事件分析概述 101 6.1.2 喪失冷卻水事件 104 6.1.3 結果與討論 108 6.2 金山核電廠24小時電廠全黑承受能力之評估 132 6.2.1 SBO 24小時承受能力評估概述 132 6.2.2 SBO 24小時TRACE/CONTAN模式分析 136 6.2.3 結果討論 140 6.3 金山核電廠斷然處置措施分析 152 6.3.1 斷然處置措施制定概述 152 6.3.2 TRACE/CONTAN分析URG 156 6.3.3 結果討論 160 第七章 金山核電廠TRACE/PARCS模式相關分析 171 7.1 金山核電廠TRACE/PARCS模式的啟動測試暫態分析 171 7.1.1 啟動測試暫態分析概述 171 7.1.2 100%功率負載棄載測試 175 7.1.3 83%功率汽機跳脫測試 183 7.1.4 84%功率主蒸汽隔離閥關閉測試 189 7.1.5 97%功率再循環泵跳脫測試 195 7.1.6 83%功率喪失飼水加熱測試 200 7.1.7 98%功率飼水泵跳脫測試 205 7.1.8 100%功率負載棄載測試時反應爐急停速度的敏感度研究 212 7.1.9 再循環流量相關的反應度變化 217 7.1.10 結果討論 227 7.2 金山核電廠控制棒擾動穩定性模擬 228 7.2.1 沸水式反應爐穩定性特性 228 7.2.2 暫態描述 230 7.2.3 模式設定 231 7.2.4 結果討論 232 第八章 結論與建議 253 8.1 結論 253 8.2 建議 259 參考文獻 261

    [1] U.S. NRC, “TRACE V5.840 User’s Manual Volume 2: Modeling Guidelines,” 2014.
    [2] T. J. Downar, Y. Xu, andV. Seker, “PARCS v3.0 U.S. NRC Core Neutronics Simulator USER MANUAL,” 2013.
    [3] Jose Reyes, “Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments,” Idaho Falls, ID, Feb.2005. doi: 10.2172/836896.
    [4] U.S. NRC, “TRACE V5.840 User’s Manual Volume 1: Input Specification,” 2014.
    [5] 李京翰, “核一廠 TRACE 模式的建立與驗證,” 國立清華大學核子工程與科學所碩士論文, 2009.
    [6] 施純寬, “核電廠系統安全分析應用程式金山核電廠TRACE之模式建立與驗證,” 核能研究所委託研究報告, 2012.
    [7] J. R. Wang, H. T. Lin, W. C. Wang, S. C. Chen, and C. Shih, “Trace models and verifications for lungmen ABWR,” Trans. Am. Nucl. Soc., 2009.
    [8] J. R. Wang, H. T. Lin, Y. H. Cheng, W. C. Wang, and C. Shih, “TRACE modeling and its verification using Maanshan PWR start-up tests,” Ann. Nucl. Energy, vol. 36, no. 4, pp. 527–536, May2009, doi: 10.1016/j.anucene.2008.12.017.
    [9] J. H. Yang, J. R. Wang, H. T. Lin, and C. Shih, “LBLOCA analysis for the Maanshan PWR nuclear power plant using TRACE,” Energy Procedia, vol. 14, pp. 292–297, 2012, doi: 10.1016/j.egypro.2011.12.932.
    [10] Y. H. Cheng, J. R. Wang, H. T. Lin, and C. Shih, “Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code,” Nucl. Eng. Des., vol. 239, no. 11, pp. 2343–2348, Nov.2009, doi: 10.1016/j.nucengdes.2009.07.025.
    [11] P. Kral, “Advantages of Complex and Detailed Modeling of RCS-Containment-ECCS Systems in Single TH Analysis,” in CAMP Meeting, Stockholm, 2010, pp. 1–34.
    [12] F. D. Auria et al., “QUALIFICATION AND APPLICATION OF COUPLED REACTOR COOLING SYSTEM AND CONTAINMENT NODALISATIONS,” in IAEA TECHNICAL MEETING, VIENNA, 2003, pp. 1–23.
    [13] J. Kim and Y. Bang, “Development of RCS-Containment Coupled Analysis Model and Evaluation of LBLOCA for APR-1400,” in 26th International Conference Nuclear Energy for New Europe, BLED, 2017, pp. 220.1-220.8.
    [14] L. Ge, Z. Yang, J. Shan, H. Li, and D. Liu, “Three-dimensional transient analysis of coupled RCS-containment integral system,” Nucl. Eng. Des., vol. 359, p. 110461, Apr.2020, doi: 10.1016/j.nucengdes.2019.110461.
    [15] T. Kozlowski, R. M. Miller, T. J. Downar, D. A. Barber, and H. G. Joo, “Consistent Comparison of the Codes RELAP5/PARCS and TRAC-M/PARCS for the OECD MSLB Coupled Code Benchmark,” Nucl. Technol., vol. 146, no. 1, pp. 15–28, Apr.2004, doi: 10.13182/NT04-A3483.
    [16] D. Lee, T. J. Downar, A. Ulses, B. Akdeniz, and K. N. Ivanov, “Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS,” Nucl. Sci. Eng., vol. 148, no. 2, pp. 291–305, Oct.2004, doi: 10.13182/NSE04-A2459.
    [17] A. Bousbia-Salah, J. Vedovi, F. D’Auria, K. Ivanov, and G. Galassi, “Analysis of the Peach Bottom Turbine Trip 2 Experiment by Coupled RELAP5-PARCS Three-Dimensional Codes,” Nucl. Sci. Eng., vol. 148, no. 2, pp. 337–353, Oct.2004, doi: 10.13182/NSE04-A2462.
    [18] L. Y. Cheng, J. S. Baek, A. Cuadra, A. Aronson, D. Diamond, and P. Yarsky, “TRACE simulation of BWR anticipated transient without scram leading to emergency depressurization,” in Embedded Topical Meeting on Advances in Thermal Hydraulics, ATH 2014, Held at the American Nuclear Society 2014 Annual Meeting, 2014, pp. 738–753.
    [19] H. T. Lin, J. R. Wang, H. C. Chen, and C. Shih, “The development and assessment of TRACE/PARCS model for Lungmen ABWR,” Nucl. Eng. Des., vol. 273, pp. 241–250, Jul.2014, doi: 10.1016/j.nucengdes.2014.03.027.
    [20] M. A. Elsawi and A. S. B. Hraiz, “Benchmarking of the WIMS9/PARCS/TRACE code system for neutronic calculations of the Westinghouse AP1000TM reactor,” Nucl. Eng. Des., vol. 293, pp. 249–257, 2015, doi: 10.1016/j.nucengdes.2015.08.008.
    [21] F. Mascari and G. Vella, “Analyses of Trace-Parcs Coupling Capability,” in Nuclear Energy for New Europe 2011, Bovec, 2011, pp. 816.1-816.9.
    [22] Y. Alzaben, V. H. Sanchez-Espinoza, and R. Stieglitz, “Analysis of a steam line break accident of a generic SMART-plant with a boron-free core using the coupled code TRACE/PARCS,” Nucl. Eng. Des., vol. 350, no. February, pp. 33–42, 2019, doi: 10.1016/j.nucengdes.2019.05.002.
    [23] R. A. Busquim e Silva, K. Shirvan, J. J. Cruz, R. P. Marques, A. L. F. Marques, and J. R. C. Piqueira, “Advanced method for neutronics and system code coupling RELAP, PARCS, and MATLAB for instrumentation and control assessment,” Ann. Nucl. Energy, vol. 140, p. 107098, 2020, doi: 10.1016/j.anucene.2019.107098.
    [24] Y. Xu, T. Downar, R. Walls, K. Ivanov, J. Staudenmeier, and J. March-Lueba, “Application of TRACE/PARCS to BWR stability analysis,” Ann. Nucl. Energy, vol. 36, no. 3, pp. 317–323, 2009, doi: 10.1016/j.anucene.2008.12.022.
    [25] T. Kozlowski et al., “TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark,” in International Conference on the Physics of Reactors 2012, PHYSOR 2012: Advances in Reactor Physics, 2012, p. 1.
    [26] 張佳穎, “龍門電廠TRACE/PARCS模式建立與應用,” 國立清華大學核子工程與科學研究所碩士論文, 2012.
    [27] 台灣電力公司, “金山電廠訓練教材,Revision 6,” 2003.
    [28] U.S. NRC, “Reactor Concepts Manual Boiling Water Reactor Systems.” [Online]. Available: https://www.nrc.gov/docs/ML1209/ML120970422.pdf.
    [29] Applied Programming Technology Inc., “Symbolic Nuclear Analysis Package (SNAP) User’s Manual,” 2012.
    [30] U.S. NRC, “TRACE V5.840 Theory Manual,” 2013.
    [31] H. C. No, K.W.Lee, and C .Song, “AN EXPERIMENTAL STUDY ON AIR-WATER COUNTERCURRENT FLOW LIMITATION IN THE UPPER PLENUM WITH A MULTI-HOLE PLATE,” Nucl. Eng. Technol., vol. 37, no. 6, pp. 557–564, 2005.
    [32] Y. Xu and T. Downar, “GenPMAXS Code for Generating the PARCS Cross Section Interface File PMAXS,” 2005.
    [33] Taiwan Power Company, “Final Safety Analysis Report, Chinshan Nuclear Power Station Unit 1&2 (FSAR),” 2000.
    [34] Y. S. Chen, Y. R. Yuann, L. C. Dai, and Y. P. Lin, “Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant,” Nucl. Eng. Des., vol. 241, no. 5, pp. 1548–1558, May2011, doi: 10.1016/j.nucengdes.2011.02.004.
    [35] J. J. Huang, H. C. Chen, J. R. Wang, L. Y. Liao, H. T. Lin, and C. Shih, “The Load Rejection Transient Analysis of Chinshan NPP (BWR/4) Using TRACE/PARCS,” in 22th International Conference on Nuclear Engineering, 2014, p. 30858.
    [36] J. R. Wang, H. T. Lin, H. C. Chen, and C. Shih, “The Establishment and Assessment of Chinshan ( BWR / 4 ) Nuclear Power Plant,” NUREG/IA-0445, 2014.
    [37] J. J. Huang, J. R. Wang, C. Shih, S. W. Chen, L. Y. Liao, and H. T. Lin, “The Establishment and Analysis of TRACE Model for Ultimate Response Guideline of Chinshan Nuclear Power Plant,” in ICAPP 2015, 2015, p. 15445.
    [38] U.S. Code of Federal Regulation, “Title 10, Part 50.46, Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.” USA, 2007.
    [39] U.S. NRC, “Standard Review Plan,” 2007.
    [40] C. Y.Chen, C. Shih, and J. R. Wang, “The alternate mitigation strategies on the extreme event of the LOCA and the SBO with the TRACE Chinshan BWR4 model,” Nucl. Eng. Des., vol. 256, pp. 332–340, Jan.2013, doi: 10.1016/j.nucengdes.2012.08.029.
    [41] K. Nikitin, P. Mueller, J. Martin, W. VanDoesburg, and D. Hiltbrand, “BWR-4 LOCA modeling with RELAP5,” in International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015, 2015, p. 1.
    [42] K. Nikitin, P. Mueller, J. Martin, W. vanDoesburg, and D. Hiltbrand, “BWR loss of coolant accident simulation by means of RELAP5,” Nucl. Eng. Des., vol. 309, pp. 113–121, Dec.2016, doi: 10.1016/j.nucengdes.2016.09.008.
    [43] Y. S. Chen, Y. R. Yuann, Y. P. Lin, and L. C. Dai, “Thermal-Hydraulic Analysis of Mark I Containment of the Chinshan Nuclear Power Plant with GOTHIC,” in Nuthos-8, 2010, no. N8P0145, pp. 1–12.
    [44] Y. R. Yuann, “Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant,” Nucl. Eng. Des., vol. 300, pp. 403–411, 2016, doi: 10.1016/j.nucengdes.2016.02.016.
    [45] Taiwan Power Company, “Chinshan Nuclear Power Station Units 1 and 2 Final Safety Analysis Report,” 2008.
    [46] 苑穎瑞, 許耕獻, 林金足, “核一廠承受電廠全黑 24 小時之能力評估,” 核能研究所, INER-11174I. 2014.
    [47] U.S. Code of Federal Regulation, “Title 10, Part 50.2, Definitions.” USA, 2014.
    [48] U.S. Code of Federal Regulation, “Title 10, Part 50.63, Loss of All Alternating Current power.” USA, 2021.
    [49] Management, Nuclear Council, Resources, “Guideline and Technical bases for NUMARC Initiatives Addressing Station Blackout at light Water Reactors,” 1991.
    [50] American Nuclear Society, ANSI/ANS-5.1-1979: Decay Heat Power in Light Water Reactors, Revision 3. 1975.
    [51] NEI and the BWROG, “BWR Containment Venting Rev 1,” 2013.
    [52] IAEA, “The Fukushima Daiichi Accident: Emergency Preparedness and Response,” 2015.
    [53] BWR Owners’ Group, “Emergency Procedure and Severe Accident Guidelines,” 2013.
    [54] B. Williamson, J. Lyter, D. Roniger, and P. Ellison, “Revising BWR emergency procedures,” 2013.
    [55] Taiwan Power Company, “Ultimate Response Guideline for Chinshan Nuclear Power Plant,” 2014.
    [56] M. A. Feltus, “Coupled 3-D kinetics thermal-hydraulic analysis of Hot Zero Power main steam line breaks using RETRAN and STAR codes,” Nucl. Eng. Des., vol. 146, no. 1–3, 1994, doi: 10.1016/0029-5493(94)90349-2.
    [57] K. N. Ivanov, N. K. Todorova, and E. Sartori, “Using the OECD/NRC Pressurized Water Reactor Main Steam Line Break Benchmark to Study Current Numerical and Computational Issues of Coupled Calculations,” Nucl. Technol., vol. 142, no. 2, pp. 95–115, May2003, doi: 10.13182/NT03-A3376.
    [58] B. D. Ivanov et al., “OECD/DOE/CEA VVER-1000 coolant transient (V1000CT) benchmark – A consistent approach for assessing coupled codes for RIA analysis,” Prog. Nucl. Energy, vol. 48, no. 8, pp. 728–745, Nov.2006, doi: 10.1016/j.pnucene.2006.06.002.
    [59] Y. Kozmenkov, S. Kliem, U. Grundmann, U. Rohde, and F. P. Weiss, “Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET,” Nucl. Eng. Des., vol. 237, no. 15-17 SPEC. ISS., 2007, doi: 10.1016/j.nucengdes.2007.02.021.
    [60] S. Kliem, S. Danilin, A. Hämäläinen, J. Hádek, A. Keresztúri, and P. Siltanen, “Qualification of Coupled 3-D Neutron-Kinetic/Thermal-Hydraulic Code Systems by the Calculation of Main-Steam-Line-Break Benchmarks in an NPP with VVER-440 Reactor,” Nucl. Sci. Eng., vol. 157, no. 3, pp. 280–298, Nov.2007, doi: 10.13182/NSE07-A2728.
    [61] T. Vanttola et al., “Validation of coupled codes using VVER plant measurements,” Nucl. Eng. Des., vol. 235, no. 2–4, pp. 507–519, Feb.2005, doi: 10.1016/j.nucengdes.2004.08.047.
    [62] A. Hämäläinen et al., “Validation of coupled neutron kinetic/thermal-hydraulic codes. Part 2: Analysis of a VVER-440 transient (Loviisa-1),” Ann. Nucl. Energy, vol. 29, no. 3, pp. 255–269, Feb.2002, doi: 10.1016/S0306-4549(01)00039-1.
    [63] S. Mittag et al., “Validation of coupled neutron kinetic/thermal–hydraulic codes. Part 1: Analysis of a VVER-1000 transient (Balakovo-4),” Ann. Nucl. Energy, vol. 28, no. 9, pp. 857–873, Jun.2001, doi: 10.1016/S0306-4549(00)00095-5.
    [64] U. Grundmann, S. Kliem, and U. Rohde, “Analysis of the Boiling Water Reactor Turbine Trip Benchmark with the Codes DYN3D and ATHLET/DYN3D,” Nucl. Sci. Eng., vol. 148, no. 2, pp. 226–234, Oct.2004, doi: 10.13182/NSE04-A2453.
    [65] U.S. NRC, “TRACE V5.0 ASSESSMENT MANUAL Main Report,” 2008. [Online]. Available: https://www.nrc.gov/docs/ML1200/ML120060208.pdf.
    [66] T. Downar, Y. Xu, and V. Seker, “PARCS v3.0 U.S. NRC Core Neutronics Simulator Theory Manual,” 2012.
    [67] T. C. Cohen, and G. V. Kumar, “Chins Han Unit 1 Startup Test Results Final Summary Report.,” 1979.
    [68] J. R. Tang, “QUALIFICATION OF THE BEST-ESTIMATE CHINSHAN BWR/4 RETRAN-3D MODEL,” 2003.
    [69] H. S. Cheng, D. J.Diamond, and M.S. Lu, “Boiling Water Reactor Scram Reactivity Characteristics,” Nucl. Technol., vol. 37, no. 3, pp. 246–260, Mar.1978, doi: 10.13182/NT78-A31993.
    [70] S. S. Ma, S. S. Hsu, and Y. S. Chen, “Scram speed assessment for transient analysis in Chinshan BWR-4 Plant,” Ann. Nucl. Energy, vol. 88, pp. 30–40, Feb.2016, doi: 10.1016/j.anucene.2015.10.018.
    [71] J. March-Leuba and P. J. Otaduy, “Comparison of BWR-stability measurements with calculations using the code LAPUR-IV,” Oak Ridge National Lab., TN (USA), 1983.
    [72] J. March-Leuba and E. D. Blakeman, “A Mechanism for Out-of-Phase Power Instabilities in Boiling Water Reactors,” Nucl. Sci. Eng., vol. 107, no. 2, pp. 173–179, Feb.1991, doi: 10.13182/NSE91-A15730.
    [73] 曾文煌, “LASALLE-2沸水式反應爐熱流不穩定性事件,” 台電核能月刊, vol. 6, pp. 50–57, 1990.
    [74] P. HANGGI, “Investigating BWR stability with a new linear frequency-domain method and detailed 3D neutronics,” SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH. 2001.
    [75] J. W. Magedanz, “Development of Model of Oskarshamn-2 Reactor for Assessment of TRACE/PARCS for Boiling Water Reactor Stability Analysis,” The Pennsylvania State University, 2010.
    [76] 黃志中, 陳紹文, 施純寬, 王仲容, 廖俐毅, 林浩慈, “金山核電廠斷然處置措施TRACE模式建立與分析,” 中國機械工程學會第三十一屆全國學術研討會, 台中, 2014, pp. 1–6.
    [77] J. J. Huang, S. W. Chen, J. R. Wang, C. Shih, and H. T. Lin, “LOCA analysis of BWR-4/Mark-I nuclear power plant with TRACE,” Kerntechnik, vol. 86, no. 2, pp. 128–142, Apr.2021, doi: 10.1515/KERN-2020-0065.
    [78] J. J.Huang, S. W. Chen, J. R. Wang, C. Shih, H. T. Lin, and C. K. Chen, “The evaluation of TRACE/PARCS model for BWR-4 nuclear power plant by startup test transient analyses,” Kerntechnik, vol. 86, no. 5, pp. 353–364, Oct.2021, doi: 10.1515/kern-2021-0009.

    QR CODE