研究生: |
謝政達 Hsieh, Cheng-Ta |
---|---|
論文名稱: |
聚乙烯塗佈靜電紡絲聚醯亞胺複合膜之製備與應用於鋰離子二次電池隔離膜之探討 Preparation of Polyethylene-coated Electrospun Polyimide Composite Films for the Separator of Lithium-ion Batteries |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
陳翰儀
Chen, Han-Yi 潘詠庭 Pan, Yung-Tin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 106 |
中文關鍵詞: | 鋰離子二次電池 、隔離膜 、聚醯亞胺 、靜電紡絲 、旋轉塗佈 、熱關閉 、充放電 、高電流密度 、機械強度改善 、共聚合 、二氧化矽 |
外文關鍵詞: | Lithium-ion secondary battery, separator, polyimide, electrospinning, spin-coating, thermal shutdown, charge-discharge, high C-rate, tensile strength, co-polymerization, silica |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究探討鋰離子二次電池隔離膜的應用趨勢與改善方向,並
首次提出以靜電紡絲製備之聚醯亞胺(PI)薄膜為骨架,旋轉塗佈低密
度聚乙烯(LDPE)為功能性塗層之複合型隔離膜。此複合隔離膜結合靜
電紡絲聚醯亞胺薄膜高度熱穩定性、電解質潤濕性與優良離子導電性
等優點,以及聚乙烯材料在高溫時能發揮的熱關閉機制,達到改善傳
統商用聚烯烴材質隔離膜高溫熱收縮所導致熱關閉機制失效的隱憂,
進而有更好的電化學表現;另外,旋轉塗佈技術能創造本研究獨創之
無增厚塗層、絕佳的均勻性,以及最小化塗佈層造成薄膜物理性質改
變。本研究第一部份提出的複合膜擁有極佳的電解質潤濕性(1300%)、
離子導電度(1.3mS/cm)、孔洞性(80%)等物理性質,在150°C 高溫測
試下毫無形變,且展現出良好的熱關閉功能,在130°C 下之薄膜阻抗
為常溫下的5000 倍以上。同時在鈕扣式全電池表現上(正極: 磷酸鋰
鐵 ; 負極: 界相碳微球 ; 1C= 138 mA/g),擁有優於商用隔離膜的第
一圈充放電平台、極佳的高電流密度表現(1C 之放電量維持率>80%)
以及不亞於商用膜之循環穩定性,並且隔離膜在循環放電後其表面仍
維持原貌,俱備在電池環境中的穩定性與堅韌性。唯獨此複合膜之機
械強度較差,因而本研究第二部份著重於薄膜機械強度改善,方法包
含聚醯亞胺反應前驅物之共聚合(Co-polymerization)以及奈米級二氧
化矽之添加;我們測試不同共聚合比例找出擁有最佳機械強度之共聚
合參數,並進一步添加奈米級二氧化矽,成功使薄膜之機械強度較原
先增加2-3 倍之多;隨後我們將機械強度改善的薄膜系列共四個組合
進行旋轉塗佈低密度聚乙烯,並進行物理性質與電化學性質之測試,
發現新的複合膜仍具備類似於原複合膜之性質表現,均遠優於商用隔
離膜。綜合以上,我們認為本研究製備之複合膜俱備取代傳統商用隔
離膜之潛力,能幫助隔離膜應用於對於電池安全性有更高要求的使用
情境,如電動車或儲能系統等。
This research focuses on the development and improvement of lithiumion secondary battery separator, and proposes a brand-new composite membrane with electrospun polyimide(PI) film as supportive layer and spin-coated low-density polyethylene(LDPE) as functional coating layer. This composite separator possesses the high thermal stability, electrolyte wettability, ionic conductivity and porosity from electrospun polyimide
film, and also the shutdown function from LDPE. The combined
advantages tackle thermal shrinkage issues with traditional polyolefin separator, thus enhance battery safety ; while the increase in wettability and porosity improves electrochemical performance of batteries. What’s more, the spin-coating technique makes unique none thickness-growth feature, uniform coating layer and minimize the changes in physical properties, hence mitigates the effect of coating layer on wettability, ionic conductivity
and porosity of separator. The proposed composite separator in the first part of this thesis shows some excellent physical properties like electrolyte wettability(1300%) 、conductivity(1.3 mS/cm) 、 porosity(80%) and thermal stability(no shrinkage at 150°C). Meanwhile, on the coin cell performance (Cathode: LiFePO4, anode: mesocarbon Microbeads(MCMB), 1C= 138 mA/g), the composite membrane shows a better first charge-discharge plateau, much better high current density performance (Capacity retention at 1C > 80%), and comparable cyclic performance in comparison with the commercial separator. Besides, there’s no obvious morphology change of composite separator after the repeated-cycling tests, proving its
stability and robustness in the operating environment. However, the composite separator in the first part of this thesis shows relatively weak tensile strength, hence in second part of the thesis, the tensile strength improvement of the separator is conducted by both co-polymerization of polyimide reactants and addition of nano-silica powder into the formula. The tensile strength of separator has been enhanced by 2-3 times through
these method;Afterward, the LDPE-spin-coated mechanically enhanced
PI series with LDPE show similar physical and electrochemical properties with the previous one regarding, and are all superior to the commercial separator. Therefore, the proposed composite separators have potential for next-generation high-safety lithium-ion secondary battery separator.
[1]胡啟章, 電化學原理與方法(二版). (台北, 五南圖書出版股份有限公司, 2011).
[2]A.J.B..L.R.Faulkner, John Wiley & Sonic. (2011).
[3]陳奕勳, 中正大學化學工程學系碩士學位論文. (2003).
[4]J. Reynders, I. J., S. Reynders, Dielectrics and Electrical Insulation, IEEE Transactions. 6 (1999). 620-631
[5] Yemeserach Mekonnen, A. S., Arif I. Sarwat <A Review of Cathode and Anode Materials for Lithium-ion Batteries>, in SoutheastCon 2016, IEEE: Norfolk, VA, USA.
[6]Fergus, J. W., Journal of Power Sources. 195 (2010). 939-954
[7]Kamali, A. and D. J. Fray, Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries. Vol. 13. 2010).
[8]Kamali-Heidari, E., A. Kamyabi-Gol, M. Heydarzadeh sohi, and A. Ataie, Journal of Ultrafine Grained and Nanostructured Materials. 51 (2018). 1-12
[9]Harris, P. J. F., Interdisciplinary Science Reviews. 26 (2001). 204-210
[10]Richard S. Baldwin, W. R. B., Eunice K. Wong, MaryBeth R. Lewton, Megan K. Harris, NASA /TM-2010-216099. (2010).
[11]Arora, P. and Z. Zhang, Chemical Reviews. 104 (2004). 4419-4462
[12]Zhang, S. S., Journal of Power Sources. 164 (2007). 351-364
[13]Liu, K., Y. Liu, D. Lin, A. Pei, and Y. Cui, Science Advances. 4 (2018).
[14]Uchida, I., H. Ishikawa, M. Mohamedi, and M. Umeda, Journal of Power Sources. 119-121 (2003). 821-825
[15]Wu, M.-S., P.-C. J. Chiang, J.-C. Lin, and Y.-S. Jan, Electrochimica Acta. 49 (2004). 1803-1812
[16]Orendorff, C. J., Electrochem. Soc. Interface. 21 (2012). 61-65
[17]Lee, Y. M., J.-W. Kim, N.-S. Choi, J. A. Lee, W.-H. Seol, and J.-K. Park, Journal of Power Sources. 139 (2005). 235-241
[18]Shi, X., W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, and A. Hu, Journal of Nanomaterials. 2015 (2015). 20
[19]Doshi, J. and D. H. Reneker, Journal of Electrostatics. 35 (1995). 151-160
[20]Bhardwaj, N. and S. C. Kundu, Biotechnology Advances. 28 (2010). 325-347
[21]Khan, W., M. Ceylan, L. Saeednia, A. Jabbarnia, and R. Asmatulu, Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions. Vol. 3. 2017.
[22]Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 313 (1969). 453
[23]Shin, Y. M., M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer. 42 (2001). 09955-09967
[24]Reneker, D. H., A. L. Yarin, H. Fong, and S. Koombhongse, Journal of Applied Physics. 87 (2000). 4531-4547
[25]Kumbar, S. G., R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomedical Materials. 3 (2008). 034002
[26]Yoo, J. J., K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Letters. 11 (2011). 1423-1427
[27]Jiang, H., D. Fang, B. S. Hsiao, B. Chu, and W. Chen, Biomacromolecules. 5 (2004). 326-333
[28]Fong, H., I. Chun, and D. H. Reneker, Polymer. 40 (1999). 4585-4592
[29]Mi-Ra Kim, S.-H. P., Ji-Un Kim and Jin-Kook Lee, Dye-Sensitized Solar Cells Based on Polymer Electrolytes, in Solar cells : dye-sensitized devices. 2011.
[30]Ramakrishna, S., K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. WORLD SCIENTIFIC, 2005).
[31]Yuan, X., Y. Zhang, C. Dong, and J. Sheng, Polymer International. 53 (2004). 1704-1710
[32]Ding, Y., H. Hou, Y. Zhao, Z. Zhu, and H. Fong, Progress in Polymer Science. 61 (2016). 67-103
[33]Bell, V. L., Journal of Polymer Science: Polymer Chemistry Edition. 14 (1976). 225-235
[34]Harris, F. W., Synthesis of aromatic polyimides from dianhydrides and diamines, in Polyimides, D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Editors. 1990, Springer Netherlands: Dordrecht. p. 1-37.
[35]Solomin, V. A., Kardash, I.E., Snagovskii, Y.S., Messerle, P.E., Zhubanov, B.A. and Pravendnikov, Dokl. Akad. Nauk USSR, English transl. 236 (1977). 510
[36]Chen, S., D. Han, and H. Hou, Polymers for Advanced Technologies. 22 (2011). 295-303
[37]Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Progress in Polymer Science. 37 (2012). 907-974
[38]Yang, K. S., D. D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon. 41 (2003). 2039-2046
[39]Huang, C., S. Wang, H. Zhang, T. Li, S. Chen, C. Lai, and H. Hou, European Polymer Journal. 42 (2006). 1099-1104
[40]Cheng, C., J. Chen, F. Chen, P. Hu, X.-F. Wu, D. H. Reneker, and H. Hou, Journal of Applied Polymer Science. 116 (2010). 1581-1586
[41]Huang, C., S. Chen, D. H. Reneker, C. Lai, and H. Hou, Advanced Materials. 18 (2006). 668-671
[42]Xu, W., Y. Ding, S. Jiang, W. Ye, X. Liao, and H. Hou, Polymer Composites. 37 (2014). 794-801
[43]Wu, G. G. a. J., Novel Polyimide Materials Produced by Electrospinning, in high-performance-polymers-polyimides-based-from-chemistry-to-applications, M. J. M. Abadie, Editor. 2012, IntechOpen: London, UK.
[44]Fukushima, S., Y. Karube, and H. Kawakami, Polymer Journal. 42 (2010). 514
[45]Zhang, H., M.-Y. Zhou, C.-E. Lin, and B.-K. Zhu, RSC Advances. 5 (2015). 89848-89860
[46]Lingyi Kong, Y. Y., Zhiming Qiu, Zhiqiang Zhou, Jiqing Hu, Journal of Membrane Science. 549 (2018). 321-331
[47]Lushi Kong, B. L., Jinglan Ding, Xiaona Yan, Guofeng Tian, Shengli Qi,Dezhen Wu, Journal of Membrane Science. (2018). 244-250
[48]Christopher J. Orendorff , T. N. L., Carlos A. Chavez , Marlene Bencomo ,and Kyle R. Fenton, Adv. Energy Mater. 3 (2013). 314-320
[49]Choi, S.-S., Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K.-S. Han, Electrochimica Acta. 50 (2004). 339-343
[50]Cho, T. H., T. Sakai, S. Tanase, K. Kimura, Y. Kondo, T. Tarao, and M. Tanaka, Electrochemical and Solid-State Letters. 10 (2007). A159-A162
[51]Miao, Y.-E., G.-N. Zhu, H. Hou, Y.-Y. Xia, and T. Liu, Journal of Power Sources. 226 (2013). 82-86
[52]Liyun Cao, P. A., Zhanwei Xu, Jianfeng Huang, Journal of Electroanalytical Chemistry. 767 (2016). 34-39
[53]Zhang, F., X. Ma, C. Cao, J. Li, and Y. Zhu, Journal of Power Sources. 251 (2014). 423-431
[54]Lee, J., C.-L. Lee, K. Park, and I.-D. Kim, Journal of Power Sources. 248 (2014). 1211-1217
[55]Ding, Y., P. Zhang, Z. Long, Y. Jiang, F. Xu, and W. Di, Science and technology of advanced materials. 9 (2008). 015005
[56]Kim, Y., W.-Y. Lee, K. J. Kim, J.-S. Yu, and Y.-J. Kim, Journal of Power Sources. 305 (2016). 225-232
[57]Cai, H., X. Tong, K. Chen, Y. Shen, J. Wu, Y. Xiang, Z. Wang, and J. Li, Polymers. 10 (2018).
[58]Chen, S., P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, and H. Hou, Nanotechnology. 19 (2008). 015604
[59]He, Y., D. Han, J. Chen, Y. Ding, S. Jiang, C. Hu, S. Chen, and H. Hou, RSC Advances. 4 (2014). 59936-59942
[60]Shayapat, J., O. H. Chung, and J. S. Park, Electrochimica Acta. 170 (2015). 110-121
[61]Yanilmaz, M., M. Dirican, and X. Zhang, Electrochimica Acta. 133 (2014). 501-508
[62]Zhai, Y., K. Xiao, J. Yu, and B. Ding, Electrochimica Acta. 154 (2015). 219-226
[63]Mennig, M. A. A. a. M., SOL-GEL TECHNOLOGIES FOR GLASS PRODUCERS AND USERS. (New York, Springer US, 2004). p. 37-48.
[64]Sahu, N., B. Parija, and S. Panigrahi, Indian Journal of Physics. 83 (2009). 493-502
[65]Wu, T.-H., Y.-H. Chu, C.-C. Hu, and L. J. Hardwick, Electrochemistry Communications. 27 (2013). 81-84
[66]Maeda, T., K. Takaesu, and A. Hotta, Journal of Applied Polymer Science. 133 (2015).
[67]Cheng, S., D. Shen, X. Zhu, X. Tian, D. Zhou, and L.-J. Fan, European Polymer Journal. 45 (2009). 2767-2778
[68]Xu, W., J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Energy & Environmental Science. 7 (2014). 513-537
[69]Lin, D., Y. Liu, and Y. Cui, Nature Nanotechnology. 12 (2017). 194
[70]Wang, L., Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, and S. X. Dou, Energy Storage Materials. 14 (2018). 22-48
[71]Zhou, W., S. Upreti, and M. S. Whittingham, Electrochemistry Communications. 13 (2011). 158-161
[72]Choudhury, S., C. T.-C. Wan, W. I. Al Sadat, Z. Tu, S. Lau, M. J. Zachman, L. F. Kourkoutis, and L. A. Archer, Science Advances. 3 (2017). e1602809
[73]Li, W., W. Tang, J. Ji, X. Xia, X. Rui, X. Chen, M. Jiang, J. Zhou, and M. Dong, Carbohydrate Research. 411 (2015). 6-14
[74]Assegie, A. A., J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, Nanoscale. 10 (2018). 6125-6138
[75]Liu, H., H. Zhou, B.-S. Lee, X. Xing, M. Gonzalez, and P. Liu, ACS Applied Materials & Interfaces. 9 (2017). 30635-30642
[76]Chai, J., Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, and L. Chen, Advanced Science. 4 (2017). 1600377
[77]Lu, Q., Y.-B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, and Q.-H. Yang, Advanced Materials. 29 (2017). 1604460
[78]Cheng, X.-B., R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, and Q. Zhang, Adv Sci (Weinh). 3 (2015). 1500213-1500213
[79]Xu, K., Chemical Reviews. 114 (2014). 11503-11618