研究生: |
謝毓玲 Yu-Ling Hsieh |
---|---|
論文名稱: |
利用基因晶片研究數種冬蟲夏草水萃液處理KG-1細胞之基因表現圖譜與標記基因 Using cDNA Microarray Technology to Analyze the Global Gene Expression Profiles and Select Marker Genes of KG-1 Cells Treated with Various Cordyceps sinensis Extracts. |
指導教授: |
葉世榮
S. R. Yeh 許志楧 Ian C. Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 基因晶片 、中草藥 、冬蟲夏草 |
外文關鍵詞: | microarray, Cordyceps sinensis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
冬蟲夏草是一種菌蟲複合體的珍貴藥材,根據研究報告指出冬蟲夏草具有多種生物學上及藥理學上的作用,包括對肝、腎、心血管、內分泌系統等皆有活性,另有抗氧化、抗癌及免疫調節功能。【本草綱目拾遺】及【本草備要】兩書記載「夏草冬蟲乃感陰陽二氣而生,夏至一陰生,故靜而為草,冬至一陽生,故動而為蟲,以其得陰陽之氣全也,故能治諸虛百損。」『冬蟲夏草,甘平,保肺益腎,止血化痰,己勞嗽。四川嘉定府所產者最佳,雲南、貴州所產者次之。』古籍認為冬蟲夏草的子實體(草)與菌核(蟲)兩部位可能不同且具不同療效;另外產地似乎也是影響冬蟲夏草藥效的因素。
不同產地及不同部位的冬蟲夏草是否具有不同的生理及藥理功能?由於冬蟲夏草成分複雜,以一般傳統實驗方法無法對此中藥的功效及可能藥理機制進行全面性的了解。然而基因晶片可以一次觀察到數千個基因的表現,為一種可以全面性、大量的、且具平行處理能力的分子生物學研究新技術。因此,利用基因晶片研究冬蟲夏草影響模式細胞株的基因表現圖譜,可以全面性的評估不同產地或不同部位的冬蟲夏草之間功能性的異同。為了確認冬蟲夏草樣本的菌種以及評估樣本間品質的均一性,本研究進行了菌種基源鑑定、有機及無機化學圖譜鑑定等。本研究以急性骨髓性白血病細胞株-KG-1當作實驗的模式細胞株,利用冬蟲夏草對KG-1細胞株的生長效應做為生物指標篩選出適當的萃取液濃度,並依據基因晶片實驗結果挑選出最佳的實驗時間點。主要的基因晶片實驗首先經過統計學的迴圈設計,其結果也是經由嚴格的篩選以及統計學的運算,才篩選出初步的冬蟲夏草標記基因。此基因晶片的結果尚需經由Real-Time PCR的應證,才會成為確定的冬蟲夏草標記基因。利用本研究模式我們已經初步篩選出冬蟲夏草的標記基因,據此結果我們將能評估不同產地或不同部位的冬蟲夏草之間功能性的異同,並且進一步探討冬蟲夏草可能的藥理機制。
Cordyceps, a highly valued traditional Chinese medicine, comprising the caterpillar larvae invaded by the parasitic fungus Cordyceps sinensis. Previous studies have demonstrated that Cordyceps exhibits a broad variety of biological and pharmacological effects towards immune, cardiovascular, hepatic, and renal systems. It has been noted in a famous Chinese medical literature Ben-Cao-Gang-Mu-Shi-Yi (Supplements to Compendium of Materia Medica) written by Zhao Xue-Min in 1765 that the growing courses of fruiting body and larvae’s body are influenced by Yin and Yang, respectively. Thus, it is believed that Cordyceps tonifies Yin and Yang only when both the fruiting body and larvae’s body are consumed altogether. Cordyceps is found in Tibet, Qinghai, Si-chuan and Yun-nan provinces of China, where the altitude is between 3500 to 5000 meters. However, relatively little information is available about the biological and pharmacological resemblance between fruiting body and larvae’s body of Cordyceps as well as Cordyceps of different geographical origin.
The constituents of Cordyceps are very complex. It is difficult to comprehensively analyze the possible pharmacological functions using traditional experimental techniques. However, the advent of DNA microarray technology allows researchers to monitor the expression levels of thousands of genes simultaneously. Thus, we would like to apply microarray technology to explore whether it is possible to distinguish the differences between aboveground and underground parts of Cordyceps as well as Cordyceps samples of distinct geological origins. In order to assure the authentication of Cordyceps sinensis, DNA sequence analysis of 18S rRNA gene was performed. In addition, HPLC and ICPMS analysis were performed to reveal the chemical fingerprints of various Cordyceps samples. A human acute myelogenous leukemia cell line KG-1 was used as the experimental cell model. Biological experiment and microarray experiment were performed to determine proper treating period as well as Cordyceps extract concentration. Statistics has played an important role on the experimental design and analysis of microarray data. A set of “Cordyceps marker genes” was identified as significantly influenced by Cordyceps extracts based on statistical methods. These preliminary results will be confirmed by Real-Time PCR assay. According to these results, we will be able to further evaluate the functional distinctions between different parts of Cordyceps and Cordyceps of diverse geological origins. Furthermore, possible pharmacological mechanisms underlying the gene expression data could also be examined in the future.
1. Chen, Y. Q., B. Hu, et al. (2004). "Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China." FEMS Microbiol Lett 230(1): 153-8.
2. 趙學敏清朝【本草綱目拾遺】
3. 汪昂清朝【本草備要】
4. Van 't Veer, L. J., H. Dai, et al. (2002). "Gene expression profiling predicts clinical outcome of breast cancer." Nature 415(6871): 530-6.
5. 許瑞祥,陳志昇,凌啟鴻(2002)."冬蟲夏草無性世代菌種之確認".生物產業13(3):474-480.
6. Hulette, B. C., G. Rowden, et al. (2001). "Cytokine induction of a human acute myelogenous leukemia cell line (KG-1) to a CD1a+ dendritic cell phenotype." Arch Dermatol Res 293(3): 147-58.
7. Dobbin, K. and R. Simon (2002). "Comparison of microarray designs for class comparison and class discovery." Bioinformatics 18(11): 1438-45.
8. Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression patterns with a complementary DNA microarray." Science 270(5235): 467-70.
9. Schena, M., D. Shalon, et al. (1996). "Parallel human genome analysis: icroarray-based expression monitoring of 1000 genes." Proc Natl Acad Sci U S A 93(20): 10614-9.
10. Jain, K. K. (2000). "Applications of biochip and microarray systems in pharmacogenomics." Pharmacogenomics 1(3): 289-307.
11. Bonham, M., H. Arnold, et al. (2002). "Molecular effects of the herbal compound PC-SPES: identification of activity pathways in prostate carcinoma." Cancer Res 62(14): 3920-4.
12. Bigler, D., K. M. Gulding, et al. (2003). "Gene profiling and promoter reporter assays: novel tools for comparing the biological effects of botanical extracts on human prostate cancer cells and understanding their mechanisms of action." Oncogene 22(8): 1261-72.
13. Kim, S. C., S. H. Byun, et al. (2004). "Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage)." Toxicology 197(3): 239-51.
14. White, J. R., Jr., J. Kramer, et al. (1994). "Oral use of a topical preparation containing an extract of Stevia rebaudiana and the chrysanthemum flower in the management of hyperglycemia." Diabetes Care 17(8): 940.
15. Goldmann, W. H., A. L. Sharma, et al. (2001). "Saw palmetto berry extract inhibits cell growth and Cox-2 expression in prostatic cancer cells." Cell Biol Int 25(11): 1117-24.
16. Chen, K. and C. Li (1993). "Recent advances in studies on traditional Chinese anti-aging materia medica." J Tradit Chin Med 13(3): 223-6, contd.
17. Chen, Y., Y. P. Zhang, et al. (1999). "Genetic diversity and taxonomic implication of Cordyceps sinensis as revealed by RAPD markers." Biochem Genet 37(5-6): 201-13.
18. Lloyd,C.G., et al. (1918). " Cordyceps sinensis, form N.Gist Gee, China. Mycologyical Notes 54:766-768.
19. Kiho, T., J. Hui, et al. (1993). "Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis." Biol Pharm Bull 16(12): 1291-3.
20. Zhang, S. L. (1985). "[Activation of murine peritoneal macrophages by natural Cordyceps sinensis and its cultured mycelia]." Zhong Xi Yi Jie He Za Zhi 5(1): 45-7, 5.
21. Zhu, J. S., G. M. Halpern, et al. (1998). "The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II." J Altern Complement Med 4(4): 429-57.
22. Wang, Z. X., X. M. Wang, et al. (1995). "[Current status of pharmacological study on Cordyceps sinensis and Cordyceps hyphae]." Zhongguo Zhong Xi Yi Jie He Za Zhi 15(4): 255-6.
23. Li, S. P., P. Li, et al. (2001). "Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia." Phytomedicine 8(3): 207-12.
24. Sheng, Y. W., et al. (2000). "Pharmacological function of Chinese medicinal fungus Cordyceps sinensis and related species . " J Food and Drug analysis 8(4): 248-57.
25. Xu, R. H., X. E. Peng, et al. (1992). "Effects of cordyceps sinensis on natural killer activity and colony formation of B16 melanoma." Chin Med J (Engl) 105(2): 97-101.
26. Huang, B. M., K. Y. Hsiao, et al. (2004). "Upregulation of steroidogenic enzymes and ovarian 17beta-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium." Biol Reprod 70(5): 1358-64.
27. Shin, K. H., S. S. Lim, et al. (2003). "Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp." Phytother Res 17(7): 830-3.
28. Chen, Y. J., M. S. Shiao, et al. (1997). "Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells." Life Sci 60(25): 2349-59.
29. Kuo, Y. C., W. J. Tsai, et al. (1996). "Cordyceps sinensis as an immunomodulatory agent." Am J Chin Med 24(2): 111-25.
30. Chung, N. P., Y. Chen, et al. (2004). "Dendritic cells: sentinels against pathogens." Histol Histopathol 19(1): 317-24.
31. Ackerman, A. L. and P. Cresswell (2003). "Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1." J Immunol 170(8): 4178-88.
32. http://rana.lbl.gov/EisenSoftware.htm
33. Chen, Y. J., R. Kodell, et al. (2003). "Normalization methods for
analysis of microarray gene-expression data." J Biopharm Stat 13(1): 57-74.
34. Yang, Y. H., S. Dudoit, et al. (2002). "Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation." Nucleic Acids Res 30(4): e15.
35. Shan, L., M. He, et al. (2002). "cDNA microarray profiling of rat mammary gland carcinomas induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine and 7,12-dimethylbenz[a]anthracene." Carcinogenesis 23(10): 1561-8.
36. Smyth, G. K. and T. Speed (2003). "Normalization of cDNA microarray data." Methods 31(4): 265-73.
37. 葉顓銘,陳少燕,黃定鼎,黃浩仁(2004). " 清理重金屬污染的植物"科學發展380期(8):44-49
38. Bezouska, K., A. Nepovim, et al. (1995). "CD 69 antigen of human lymphocytes is a calcium-dependent carbohydrate-binding protein." Biochem Biophys Res Commun 208(1): 68-74.
39. Ziegler, S. F., F. Ramsdell, et al. (1994). "The activation antigen CD69." Stem Cells 12(5): 456-65.
40. Richard , A.G , et al. " Kuby, immunology. ",FREEMAN fourth edition.
41. Sancho, D., M. Gomez, et al. (2003). "CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis." J Clin Invest 112(6): 872-82.
42. Yang, L. Y., A. Chen, et al. (1999). "Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice." J Lab Clin Med 134(5): 492-500.
43. Yang, L. Y., W. J. Huang, et al. (2003). "H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL." J Lab Clin Med 141(1): 74-83.
44. Kuo, Y. C., W. J. Tsai, et al. (2001). "Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis." Life Sci 68(9): 1067-82.
45. Chin, Y. E., M. Kitagawa, et al. (1996). "Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1." Science 272(5262): 719-22.
46. Welte, T., D. Leitenberg, et al. (1999). "STAT5 interaction with the T cell receptor complex and stimulation of T cell proliferation." Science 283(5399): 222-5.
47. Neumann, C. A., D. S. Krause, et al. (2003). "Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression." Nature 424(6948): 561-5.
48. Li, S. P., P. Li, et al. (2001). "Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia." Phytomedicine 8(3): 207-12.
49. Saidi-Mehtar, N. and M. C. Hors-Cayla (1981). "Sheep gene mapping by somatic cell hybridization. III. Synteny between pyruvate kinase M2 (PKM2) and nucleoside phosphorylase (NP) in domestic sheep." Ann Genet 24(3): 148-51.
50. Liu, J. and S. R. Farmer (2004). "Regulating the balance between PPARg and b-catenin signaling during adipogenesis: A GSK3b phosphorylation -defective mutant of b-catenin inhibits expression of a subset of adipogenic genes." J Biol Chem.
51. Lo, H. C., S. T. Tu, et al. (2004). "The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin." Life Sci 74(23): 2897-908.
52. Smith, P., W. M. Leung-Chiu, et al. (2002). "The GLH proteins, Caenorhabditis elegans P granule components, associate with CSN-5 and KGB-1, proteins necessary for fertility, and with ZYX-1, a predicted cytoskeletal protein." Dev Biol 251(2): 333-47.
53. Salazar, M. A., A. V. Kwiatkowski, et al. (2003). "Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton." J Biol Chem 278(49): 49031-43.
54. Yoder, J. A. and G. W. Litman (2000). "The zebrafish fth1, slc3a2, men1, pc, fgf3 and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13." Gene 261(2): 235-42.
55. Blaess, S., D. Graus-Porta, et al. (2004). "Beta1-integrins are critical for cerebellar granule cell precursor proliferation." J Neurosci 24(13): 3402-12.
56. Goldbaum, O. and C. Richter-Landsberg (2004). "Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture." J Neurosci 24(25): 5748-57.
57. Ohse, K., S. Yashiki, et al. (1999). "Expression of heat shock protein 70 mRNA in polymorphonuclear cells responding to surgical stress." J Anesth 13(3): 144-9.