研究生: |
房博文 Fang, Po-Wen |
---|---|
論文名稱: |
混凝土屏蔽與活化特性在各式加速器環境的系統性探討 A systematic investigation into concrete's shielding performance and activation susceptibility in various accelerator environments |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
林威廷
Lin, Uei-Tyng 蔡惠予 Tsai, Hui-Yu 劉鴻鳴 Liu, Hong-Ming 張似瑮 Zhang, Si-Li |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 加速器 、混凝土 、輻射屏蔽 、活化潛勢 、蒙地卡羅 |
外文關鍵詞: | accelerator, concrete, radiation shielding, activation, Monte Carlo |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過系統性的分析探討混凝土在各式加速器環境中的屏蔽與活化特性,為配合台灣主要加速器應用的輻射防護需求,特別針對放射性物質產製的迴旋加速器、質子/碳離子癌症治療的加速器以及高能電子同步加速器等設施輻射場進行深入比較與統合分析。研究成果主要展現在以下四項重要觀察或結論:(1)有自屏蔽設計的放射性物質生產設施可大幅降低室內中子通率並簡化未來設施除役問題,考量11種(p,xn)核種產製情節所誘發的混凝土活化潛勢,經中子產率歸一化處理後,活化潛勢呈現高度相似分布;(2)質子治療加速器運轉引發的輻射場以高能中子為主導,加入金屬夾層的混凝土屏蔽效果有限,遠不如其在光子為主之直線加速器輻射場的表現;(3)計算26種不同組成之混凝土在三種加速器輻射場下的屏蔽表現,輻射衰減長度與混凝土密度具有高度線性相依特性;(4)比較二種常見簡化情節與接近實際運轉之週期性照射,基於核種活化的預測差異,據以建立合適的核種活度修正因子,並引入二個無因次的關鍵因子,解決簡化情節活化評估引起的誤差。
第一部份探討台灣13座放射性物質生產設施的運轉現況,7座有自屏蔽設計者可大幅降低室內中子通率並減少混凝土活化,簡化未來設施除役問題;彙整11種在迴旋加速器常見之(p,xn)產製情節的二次中子特性,包含18O(p,n)18F、15N(p,n)15O、68Zn(p,n)68Ga與68Zn(p,2n)67Ga、69Ga(p,2n)68Ge、89Y(p,n)89Zr、100Mo(p,pn)99Mo與100Mo(p,2n)99mTc、112Cd(p,2n)111In、124Xe(p,2n)123Cs以及203Tl(p,3n)201Pb。11種情節下的二次中子特性經產率歸一化後高度相似,同時由二次中子所引發之混凝土活化潛勢亦呈現相似的空間分布,此一特性有利於簡化設施歷年運轉情節的評估設定。第二部份探討中國醫質子治療設施夾層式隔間牆(0.9公尺混凝土/0.2公尺鐵/0.9公尺混凝土)的屏蔽表現。研究結果顯示此一夾層式設計在高能中子主導之輻射場下,相比於同厚度全混凝土的屏蔽,只有多提供2倍的劑量衰減;相較之下,此一夾層設計在光子為主之直線加速器環境可多提供20倍的劑量衰減。第三部份彙整比較26種不同組成之混凝土在三種加速器輻射場下的屏蔽表現,並將屏蔽表現與四個混凝土的材料特性進行分析,包含密度(2.1 – 5.9 g/cm3);原子序(7.1 – 19.6);氫含量(0.05 – 2.2 wt%)及重元素含量(0.6 – 88.1wt%)。分析結果發現,衰減長度與密度的變化呈現高度相關,透過線性迴歸定義各種輻射場下的變化方程式,此成果可提供相關設施迅速評估混凝土密度改變後的屏蔽表現差異。另外,本研究結果顯示,氫含量的增加對於高能中子場中的屏蔽表現幾乎沒有貢獻。第四部份比較二種常見簡化情節與接近實際運轉之週期性照射,建立適當的修正因子,解決簡化連續照射情節所產生的核種活化預測誤差。本研究並進一步引入兩個關鍵的無因次參數(工作因子與半衰期因子),使修正因子適用於大部份照射情節的加速器設施,此一成果有利於使用連續照射的假設並減少簡化情節對活化預測的誤差。
This research systematically investigates the shielding performance and activation susceptibility of concrete against radiation fields induced by various accelerators, including radioisotope production facilities, proton/carbon-ion therapy facilities, and GeV electron synchrotron facilities. The main contributions are as follows: (1) Characteristics of neutron production and concrete activation in cyclotron vaults for self-shielded and non-self-shielded facilities were examined in detail. The effects of various (p,xn) production routes on the neutron-induced long-lived radioactivity in the concrete walls of a typical cyclotron vault were compared. (2) In comparison with that of a concrete wall of the same thickness, the shielding performance of a concrete-iron-concrete sandwich wall was found only marginally better, further reducing the transmitted dose rate by approximately a factor of 2 against secondary neutrons generated in a proton therapy facility. (3) The performance of 26 types of concrete in three accelerator radiation environments were evaluated. The concrete density was found to have the most direct and correlated effect on the resulting dose attenuation length in concrete. (4) Two simplified scenarios with continuous irradiation are commonly used instead of a periodic irradiation scenario. This study examined residual radionuclide productions under these three scenarios and introduced correction factors to enhance the practical applicability of the two simplified models.
In the first part, this study examined the induced activity of concrete in 13 radioisotope production cyclotrons (seven have self-shielding designs and six are non-self-shielded types) in Taiwan. Eleven (p,xn) related nuclear reactions, 18O(p,n)18F, 15N(p,n)15O, 68Zn(p,n)68Ga and 68Zn(p,2n)67Ga, 69Ga(p,2n)68Ge, 89Y(p,n)89Zr, 100Mo(p,pn)99Mo and 100Mo(p,2n)99mTc, 112Cd(p,2n)111In, 124Xe(p,2n)123Cs, 203Tl(p,3n)201Pb, were involved in their operation. For the considered self-shielded facility, the induced activities in the walls and roof of the cyclotron room were substantially lower than the clearance level; only the concrete activation in the floor could be a problem. In addition, the effects of various (p,xn) production routes on the neutron-induced long-lived radioactivity in concrete were compared. After neutron yield normalization, there is no significant discrepancy among these reactions. This observation offers valuable insights for professionals involved in decommissioning of cyclotrons used for radioisotope production.
In the second part, the shielding performance and activation susceptibility of a sandwich wall in the CMUH proton therapy facility were investigated. In comparison with that of a concrete wall of the same thickness, the shielding performance of the concrete-iron-concrete wall was only marginally better, further reducing the transmitted dose rate by approximately a factor of 2, as compared with an approximately 20-fold increase in the dose attenuation for 18-MV photons.
Different types of concrete contain various elements in different proportions and therefore may exhibit different shielding performances. In the third part, the performance of 26 types of concrete in three accelerator radiation environments were evalauted. The concrete density was found to have the most direct and correlated effect on the resulting dose attenuation length in concrete. Fitting parameters of a linear relation using the calculated data were determined and the result can be used to estimate the effect of concrete composition on its shielding performance.
The residual radioactivity in accelerator components depends on the irradiation profile employed. As an alternative to a fully periodic scenario, in practice, researchers frequently resort to two simplified continuous irradiation scenarios. In the fourth part, this study offered a systematic comparison of residual radionuclide productions under these three scenarios and introduced correction factors to enhance the practical applicability of the two simplified models.
[1] Lawrence, E.O. and Linvingston, M.S., 1932. The production of high speed light ions without the use of high voltages. Phys. Rev. 40, 19.
[2] International atomic energy agency, 2020. Decommissioning of Particle Accelerators. Nuclear Energy Series No. NW-T-2.9. Vienna, Austria.
[3] International atomic energy agency, 2024. Database of cyclotrons for radionuclide production. [Online] Available: https://nucleus.iaea.org/sites/accelerators/Pages-/Cyclotron.aspx, Accessed 1st March 2024.
[4] Particle Therapy Co-Operative Group, 2024. [Online] Available: https://www.ptcog.site, Accessed 1st March 2024.
[5] National Council on Radiation Protection and Measurements, 2005. Radiation protection for particle accelerator facilities. NCRP-144 report, Maryland, USA.
[6] Ipe, N.E., Fehrenbacher, G., Gudowska, I., Paganetti, H., Schippers, J.M., Roesler, S., Uwamino, Y., 2010. Shielding design and radiations safety of charged particle therapy facilities. PTCOG Report No. 1.
[7] Troxell, G.E., Davis, H.E., Kelly, J.E., 1968. Composition and properties of concrete. 2nd edition. McGraw-Hill book company, New York, USA.
[8] International atomic energy agency, 2023. Application of the concept clearance. IAEA, Safety Guide No. GSG-18. Vienna, Austria.
[9] International atomic energy agency, 2014. Radiation protection and safety of radiation sources: interantion basic safety standards. IAEA, General Safety Requirements Part 3. Vienna, Austria.
[10] Paans, A.M.J. and de Jong, J.R. 2017., The decommissioning of cyclotron facilities for the production of radionuclides in nuclear medicine. Chap. 9 in Quality in Nuclear Medicine, Springer International Publishing, Switzerland.
[11] European Commission, 1999. Evaluation of the radiological and economic consequences of decommissioning particle accelerators”, EUR 19151. Luxembourg.
[12] International atomic energy agency, 2019. Decommissioning of Medical, Industrial and Research Facilities. IAEA, Specific Safety Guide No. SSG-49. Vienna, Austria.
[13] International atomic energy agency, 1979. Radiological safety aspects of the operation of electron linear accelerators. IAEA Technical Reports Series No. 188. Vienna, Austria.
[14] Vylet, V. and Liu, J.C., 2001. Radiation Protection at High Energy Electron Accelerators. Radiat. Prot. Dosim. 96, 333-343.
[15] Hagiwara, M., Sanami, T., Masumoto, K., Iwamoto, Y., Matsuda, N., Sakamoto, Y., Nakane, Y., Nakashima, H., Uwamino, Y., 2011. Spectrum measurement of neutrons and gamma-rays from thick H218O target bombarded with 18 MeV protons. J. Korean Phys. Soc. 59, 2035-2038.
[16] Lagares, J.I., Guerrero Araque, J.E., Méndez-Villafañe, R., Arce, P., Sansaloni, F., Vela, O., Díaz, C., Campo, X., Pérez, J.M., 2016. Neutron spectra around a tandem linear accelerator in the generation of 18F with a bonner sphere spectrometer. Appl. Radiat. Isot. 114, 154-158
[17] Meier, M.M., Goulding, C. A., Morgan, G.L., Ullmann, J. L., 1990. Neutron yields form stopping- and near-stopping- length targets for 256-MeV protons. Nucl Sci Eng. 104, 339-363
[18] T. Nakamura and L. Heilbronn., 2006. Handbook on secondary particle production and transport by high-energy heavy ions. World Scientific, Singapore
[19] Lee, H.S., Ban, S., Sanami, T., Takahashi, K., Sato, T., Shin, K., Chung, C., 2005. Angular distribution measurements of photo-neutron yields produced by 2.0 GeV electrons incident on thick targets. Radiat. Prot. Dosim. 116, 653-657
[20] Bakhtiari, M., Oranj, L.M., Jung, N.S., Lee, A., Lee, H.S., 2020. Estimation of neutron production yields from H218O as the 18F-production target bombarded by 18- MeV protons. Radiat. Phys. Chem. 177, 109120
[21] Hsu, Y.C. 2014. Accelerator induced neutron yields and material activation. (Master’s thesis). National Tsing Hua University, Taiwan.
[22] The Internation Commission on Radiological Protection, 2007. The recommendations of the international commission on radiological protection. ICRP publication 103. Elsevier, Netherlands.
[23] Fernández, F., Amgarou, K., Domingo, C., Garía, M.J., Quincoces, G., Martí-Climent, J. J., Mèndez, R., Barquero, R., 2007. Neutron spectrometry in a PET cyclotron with a Bonner sphere system. Radiat. Prot. Dosim. 126, 371-375.
[24] The Interational Commission on Radiological Protection, 1996. Conversion coefficients for use in radiological protection agaist external radiation. ICRP publication 74. Pergamon, UK.
[25] Infantino, A., Marengo, M., Baschetti, S., Cicoria, G., Vaschetto, V.L., Lucconi, G., Massucci, P., Vichi, S., Zagni, F., Mostacci, D., 2015. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field. Radiat. Phys. Chem. 116, 231-236.
[26] Demerdjiev, A., Dimitrov, D.T., Tonev, D., Goutev, N., Dimitrova, G.D., Geleva, E., Genchev, S.G., 2023. Radiation protection studies for the INRNE-BAS cyclotron facility using Monte Carlo FLUKA code. Radiat. Phys. Chem. 212, 111175.
[27] Agosteo, S., Magistris, M., Mereghetti, A., Silari, M., Zajacova, Z., 2007. Shielding data for 100 – 250 MeV proton accelerators: double differential neutron distributions and attenuation in concrete. Nucl. Instr. Meth. Phys. Res. B. 265, 581-598.
[28] Lai, B.L., 2018. Radiation field characterization and shielding studies on proton, carbon-ion, and accelerator-based boron neutron capture therapy facilities. (PhD. thesis.) National Tsing Hua University, Taiwan
[29] Cadini, F., Bolst, D., Guatelli, S., Beltran, C., Jackson, M., Ronsenfeld, A.B., 2016. Neutron shielding for a new projected proton therapy facility: A Geant4 simulation study. Phys. Med. 32, 1862-1871
[30] Garcia-Fernandez, G.F., Gallego, E., Gomez-Ros, J.M., Vega-Carrillo, H.R., Garcia-Baonza, R., Cevallos-Robalino, L.E., Guzman-Garcia, K.A., 2021. Neutron dosimetry and shielding verification in commissioning of compact proton therapy centers (CPTC) using MCNP6.2 Monte Carlo code. Appl. Radiat. Isot. 169, 109279
[31] Kim, J.W., Kwon, J.W., Lee, J., 2005. Design of radiation shieldng for the proton therapy facility at the national cancer center in Korea. Radiat. Prot. Dosim. 115, 271-275
[32] Agosteo, S., Magistris M., Mereghetti, A., Silari, M., Zajacova, A., 2008. Shielding data for 100 – 250 MeV proton accelerators: attenuation of secondary radiation in thick iron and concrete/iron shields. Nucl. Instr. Meth. Phys. Res. B. 266, 3406-3416.
[33] Hsieh, Y.I., Lai, B.L., Shiau, A.C., Chen, H.L., Sheu, R.J., 2023. Shielding analysis of the proton therapy facility at China Medical University Hospital: comparison of a simplified approach with Monte Carlo simulations. Radiat. Prot. Dosim. 199, 1947-1952
[34] Yang, Y., Ma, F., Zhou, X., Li, W., Su, Y., Xu, Ch., Jiang, B., 2024. An investigation of neutron shielding and activation performances of four types of concrete for carbon ion therapy facility. Appl. Radiat. Isot. 206, 111233
[35] Asano, Y., 2012. Radiation safety for electron accelerators: synchrotron radiation facility. Radiat. Prot. Environ. 35, 135-144
[36] Job. P.K. and Casey, W.R., 2013. Shielding calculations for the National synchrotron light source-II experimental beamlines. Nucl. Instr. Meth. Phys. Res. A. 698, 196-201
[37] Devienne, A., García-Fusté, M.J., 2020. Shielding calculations for the design of new beamlines at ALBA synchrotron. Radiat. Phys. Chem. 171, 108759
[38] Abdo, A.E.S., 2002. Calculation of the cross-section for fast neutrons and gamma-rays in concrete shields. Ann. Nucl. Energy. 29, 1977-1988
[39] Akkurt, I., Akyıldırım, H., Mavi, B., Kilincarslan, S., Basyigit, C., 2010. Radiation shielding of concrete containing zeolite. Radiat. Meas. 45, 827-830
[40] Ouda, A.S., 2015. Development of high-performance heavy density concrete using different aggregrates for gamma-ray shielding. Prog. Nuclear Energy 79, 48-55.
[41] Gencel, O., Bozkurt, A., Kam, E., Korkut, T., 2011. Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann. Nucl. Energy. 38, 2719-2723
[42] El-Khayatt, A.M., 2010. Radiation shielding of concretes containing different lime/silica ratios. Ann. Nucl. Energy. 37, 991-995
[43] Korkut, T., Ün, A., Demir, F., Karabulut, A., Budak, G., Şahin, R., Oltulu, M., 2010. Neutron dose transmission measurements for several new concrete samples including colemanite. Ann. Nucl. Energy. 37, 996-998.
[44] Wang, J.L., Lu, J.J., Ding, D.J., Jiang, W.H., Li, Y.D., Qiu, R., Zhang, H., Wang, X.Z., Ruan, H.S., Teng, Y.B., Wu, X.G., Zheng, Y., Zhao, Z.H., Liao, K.Z., Mai, H.C., Wang, X.D., Peng, K., Wang, W., Tang, Z., Yu, Z.Y., Wu, Z., Song, H.H., Wei, S.Y., Mao, S.L., Xu, J., Tao, J., Zhang, M.Q., Xue, X.Q., 2023. Heavy concrete shielding properties for carbon therapy. Nucl. Eng. Technol. 55, 2335-2347
[45] https://www-nds.iaea.org/exfor/endf.htm Accessed 25th May 2024
[46] Carrol, L.R., 2001. Predicting long-lived, neuron-induced activation of concrete in a cyclotron vault. AIP Conf. Proc. 576, 301–304
[47] Kinno, M., Kimura, K.I., Nakamura, T., 2002. Raw materials for low-activation concrete neutron shields. J. Nucl. Sci. Technol. 39, 1275-1280
[48] Suzuki, A., Iida, T., Moriizumi, J., Sakuma, Y., Takada, J., Yamasaki, K., Yoshimoto, T., 2001. Trace elements with large arctivation cross sections in concrete materials in Japan. J. Nucl. Sci. Technol. 38, 542-550
[49] Yoshida, G., Nishikawa, K., Nakamura, H., Yashima, H., Sekimoto, S., Miura, T., Masumoto, K., Toyoda, A., Matsumura, H., 2020. Investigation of variations in cobalt and europium concentrations in concrete to prepare for accelerator decommissioning. J. Radioanal. Nucl. Chem. 325, 801-806
[50] Phillips, A.B., Prull, D.E., Ristinen, R.A., Kraushaar, J.J., 1986. Residual radioactivity in a cyclotron and its surroundings. Health Phys. 51, 337-342
[51] Kimura, K.I., Ishikawa, T., Kinno, M., Yamadera, A., Nakamura, T., 1994. Residual long-lived radioactivity distribution in the inner concrete wall of a cyclotron vault. Health Phys. 67, 621-631
[52] Calandrino, R., Vecchio, A., Savi, A., Todde, S., Griffoni, V., Brambilla, S., Parisi, R., Simone, G., Fazio, F., 2006. Decommissioning procedures for 11 MeV self-shielded medical cyclotron after 16 years of working time. Health Phys. 90, 588-596
[53] Yamaguchi, I., Kimura, K.I., Fujibuchi, T., Takahashi, Y., Saito, K., Otake, H., 2011. Radiation safety management of residual long-lived radioactivity distributed in a inner concrete wall of a medical cyclotron room”, Radiat. Prot. Dosim. 146, 167-169
[54] Fujibuchi, T., Nohtomi, A., Baba, S., Sasaki, M., Komiya, I., Umedzu, Y., Honda, H., 2014. Distribution of residual long-lived in the inner concrete walls of a compact medical cyclotron vault room. Ann. Nucl. Med. 29, 84-90
[55] Wagatsuma, K., Ishiwata, K., Nobuhara, F., Koumura, I., Kunugi, M., Oda, K., Miwa, K., Toyohara, J., Ishii, K., 2019. Pre-discard estimation of radioactivated materials in positron emission tomography cyclotron systems and concrete walls of a cyclotron vault. Med. Phys. 46, 2457-2467
[56] Vichi, S., Infantino, A., Zagni, F., Cicoria, G., Braccini, S., Mostacci, D., Marengo, M., 2020. Activation studies for the decommissioning of PET cyclotron bunkers by means of Monte Carlo simulations. Radiat. Phys. Chem. 174, 108966
[57] Wu, Q., Wang, Q., Lian, T., Zhang, G., Ma, Y., Chen, Y., Ye, R., Liu, Q., Wang, Y., Wang. H., 2016. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility. Appl. Radiat. Isot. 115, 235-250
[58] Yu, Y. and Chen, Z., 2024. Study on induced radioactivity in proton therapy acceleratros. Radiat. Phys. Chem. 221, 111751
[59] Tesse, R., Stichelbaut, F., Pauly, N., Dubus, A., Derrien, J., 2018. GEANT4 benchmark with MCNPX and PHITS for activation of concrete. Nucl. Instr. Meth. Phys. Res. B. 416, 68-72
[60] Luo, C., Li, W., Yang, Bo., Su, Y., Li, Y., Li, Z., Mao, W., Liu, X., Yan, W., Ma, F., 2022. Induced radiation studies and personnel dose assessment in a carbon ion therapy facility. Appl. Radiat. Isot. 188, 110350
[61] Bessho, K., Matsumura, H., Miura, T., Wang, Q., Masumoto, K., Hagura, H., Nagashima, Y., Seki, R., Takahashi, T., Sasa, K., Sueki, K., Matsuhiro, T., Tosaiki, Y., 2007. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production. Nucl. Instr. Meth. Phys. Res. B 259, 702-707
[62] Carbonez, P., La Torre, F.P., Michaud, R., Silari, M., 2012. Residual radioactivity at the CERN 600 MeV synchro-cyclotron. Nucl. Instr. Meth. Phys. Res. A 694, 234-245
[63] Masumoto, K., Toyoda, A., Eda, K., Izumi, Y., Shibata, T., 2003. Evaluation of radioactivity induced in the accelerator building and its application to decontamination work. J. Radioanal. Nucl. Chem. 225, 465-469
[64] Yoshida, G., Matsumura, H., Masumoto, K., Nakamura, H., Toyoda, A., Nobuhara, F., Iwai, S., Nishikawa, K., Hayashi, K., Ishioka, J., Hanaki, H., Miyauchi, H., Nagahashi, S., Sawada, M., Goto, K., Yamamoto, Y., Miura, T., Bessho, K., 2022. Investigation into activation of accelerators at various synchrotron radiation facilities in Japan. J. Nucl. Sci. Technol. 59, 543-554
[65] Böhlen, T.T., Cerutti, F., Chin, M.P.W., Fassò, A., Ferrari, A., Ortega, P.G., Mairani, A., Sala, P.R., Smirnov, G., Vlachoudis, V., 2014. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets 120, 211-214
[66] Ferrari, A., Sala, P.R., Fassò, A., Ranft, J., 2005. FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773
[67] Infantino, A., Cicoria, G., Lucconi, G., Pancaldi, D., Vichi, S., Zagni, F., Mostacci, D., Marengo, M., 2016. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements. Phys. Med. 32, 1602-1608
[68] 國家同步輻射研究中心,2010。台灣光子源(TPS)輻射安全評估報告
[69] Kumagai, M., Sodeyama, K., Sakamoto, Y., Toyoda, A., Matsumura, H., Ebara, T., Yamashita, T., Masumoto, K. 2017. Activation reduction method for a concrete wall in a cyclotron vaul. J. Radiat. Prot. Res., 42, 141-145
[70] Bakhtiari, M., Oranj, L.M., Jung, N.S., Lee, A., Lee, H.S., 2020. Study on concrete activation reduction in a PET cyclotron vault. J. Radiat. Prot. Res., 45, 130-141
[71] McConn Jr., R.J., Gesh, C.J., Pagh, R.T., Rucker, R.A., Williams III, R.G., 2011. Compendium of material composition data for radiation transport modeling. Rev.1. Pacific Northwest National Laboratory, Richland, Washington, USA.
[72] Sheu, R.J., Chen, Y.F., Lin, U.T., Jiang, S.H., 2012. Deep-penetration calculations in concrete and iron for shielding of proton therapy accelerators. Nucl. Instr. Meth. Phys. Res. B 280, 10-17
[73] Wang, K.W., 2021. A comparative study on the predction of neutron yields and associated activation of materials for cyclotron-based medical isotope production facilities in Taiwan. (Master thesis.) National Tsing Hua University, Taiwan
[74] International atomic energy agency., 2011. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211, Vienna, Austria.
[75] Ryu, D.W., Ko, J.W., Noguchi, T., 2011. Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete. Cem. Concr. Compos. 33, 142-153.
[76] Ding, X., Zhang, J., Wang, J., 2019. Integrative modeling on self-desiccation and moisture diffusion in concrete based on variation of water content. Cem. Concr. Compos. 97, 322-340.
[77] Cowie, L., Mchenzie, J., Burt, G., 2024. Calculation of RF pulse evolution due to dispersion in travelling wave linacs using Fourier methods. Nucl. Instr. Meth. Phys. Res. A. 1064, 169464
[78] Asif, A., Qurenshi, T.M., Zeeshan, S., Sher, F., Ayub, M., Yaqub, K., Baig, A., Redhman, A., Khan, M.A., 2022. Application of 6 MeV LINAC in food industries: enhancement of shelf life of onion, potato and mango. Radiat. Phys. Chem. 195, 110058
[79] Kumar, A., Mishra, G., De, S., Yadav, V., Chaudhary, N., Yerge, U., Mondal, J., Thomas, R.G., 2023. Measurements of continuous spectra of photons from 4/6 MeV dual energy e-LINAC. Radiat. Phys. Chem. 208, 110930
[80] Meleshenkovskii, I., Elayeb, A., De Stefano, R., Sari, A., 2022. Feasibility study of the photofission technique for radiological characterization of 220-L concrete-lined nuclear waste drums using 7 or 9 MeV linacs. Nucl. Instr. Meth. Phys. Res. A. 1029, 166422
[81] Kutsaev, S.V., Agustsson, R., Arodzero, A., Berry, R., Bezhanov, A., Boucher, S., Chimalpopoca, O., Diego, A., Faillace, L., Gavryushkin, D., Harrison, M., Hartzell, J.J., McNevin, J., Ruelas, M., Yu Smirov, A., Verma, A., Woods, K., 2021. Compact X-band electron linac for radiotherapy and security applications. Radiat. Phys. Chem. 185, 109494.
[82] Vichi, S., Dean, D., Ricci, S., Zagni, F., Berardi, P., Mostacci, D., 2020. Activation study of a 15 MeV LINAC via Monte Carlo simulations. Radiat. Phys. Chem. 172, 108758
[83] Charlton, M., Choi, J.J., Chung, J., Cladé, P., Comini, P., Crépin, P.P., Crivelli, P., Dalkarov, O., Debu, P., Dodd, L., Douillet, A., Guellati-Khélifa, S., Hervieux, P.A., Hilico, L., Husson, A., Indelicato, P., Janka, G., Jonsell, S., Karr, J.P., Kim, B.H., Kim, E.S., Kim, S.K., Ko, Y., Kosinski, T., Kuroda, N., Latacz, B., Lee, H., Lee, J., Leite, A.M.M., Lévêque, K., Lim, E., Liszkay, L., Lotrus, P., Louvradoux, T., Lunney, D., Manfredi, G., Mansoulié, B., Matusiak, M., Mornacchi, G., Nesvizhevsky, V.V., Nez, F., Niang, S., Nishi, R., Nourbaksh, S., Park, K.H., Paul, N., Pérez, P., Procureur, S., Radics, B., Regenfus, C., Rey, J.M., Reymond, J.M., Reynaud, S., Roussé, J.Y., Rousselle, O., Rubbia, A., Rzadkiewicz, J., Sacquin, Y., Schmidt-Kaler, F., Staszczak, M., Tuchming, B., Vallage, B., Voronin, A., Welker, A., van der Werf, D.P., Wolf, S., Won, D., Wronka, S., Yamazaki, Y., Yoo, K.H., 2021. Positron production using a 9 MeV electron linac for the GBAR experiment. Nucl. Instr. Meth. Phys. Res. A. 985, 164657
[84] Kassim, H., Kezzar, K., Aljammaz, I., Alhumaidhi, S., Alnajrani, M., Alrumayan, F. 2019. Measurement of long-lived isotopes emitted from the inner concrete walls of the CS30 cyclotron vault at KFSHRC. AIP Conf. Proc. 2160, 040002
[85] Kambali, I., Suryanto, H., Parwanto. 2016. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production. Australas Phys. Eng. Sci. Med. 39, 403
[86] Martinez-Serrano, J.J., and de los Rios, A.D., 2010. Predction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX. Med. Phys. 37, 6015
[87] Masumoto, K., Iiduka, H., Sato, S., Kuga, K., Fujibuchi, T., Sasaki, M., Fukumura, T., Nakamura, H., Toyoda, A., 2014. Effectivenss of self-shielding type cyclotrons. PNST 4, 223-227
[88] Luo, C., Li, W., Li, Y., Han, X., Yang, B., Su, Y., Khasanov, S., Liu, X., Mao, W., Yan, W., 2024. Study on induced radioactivity and individual dose evaluation in gantry room for Varian ProBeam proton therpy system. Appl. Radiat. Isot. 208, 111297
[89] Avery, S., Ainsley, C., Maughan, R., McDonough, J., 2008. Analytical shielding calculations for a proton therapy facility. Radiat. Prot. Dosim. 131, 167-179
[90] Mei, Z., Fan, K., Liang, Z., Yang, J., Fan, M., 2021. Optimization of a B4C/graphite composite energy degrader and its shielding for a proton therapy facility. Nucl. Instr. Meth. Phys. Res. A. 995, 165127
[91] Ramoisiaux, E., Hernalsteens, C., Tesse, R., Gnacadja, E., Pauly, N., Stichelbaut, F., 2023. Ambient dose simulation of the ProtherWal proton therapy centre radioactive shielding dcay using BDSIM and FISPACT-II. EDP Nucl. Sci. Technol. 9, 27
[92] Cesana, A., Mauro, E., Silari, M., 2010. Induced radioactivity in a patient-specific collimator used in proton therapy. Nucl. Instr. Meth. Phys. Res. B. 268, 2272-2280
[93] Ebara, Y., Tsutsui, H., Nakajima, S., Hara, S., Nomura, S., Suga, K., Yoshida, J., Taki, K., Murata, H., Takahashi, N., Hashimoto, A., Sakemi, T., Kamiguchi, N., Arakawa, Y., Morie, T., Hirayama, T., Oda, H., Fujita, S., Kanakura, J., Mikami, Y. Tsurudome, T., Miyashita, T., Kumata, Y., 2023. First beam extraction from a superconducting azimuthally varying field cyclotron for proton therapy. Nucl. Instr. Meth. Phys. Res. A. 1056, 168629
[94] Iwata, Y., Shirai, T., Mizushima, K., Matsuba, S., Yang, Y., Noda, E., Urata, M., Muramatsu, M., Katagiri, K., Yonai, S., Inaniwa, T., Sato, S., Abe, Y., Fujimoto, T., Sasano, T., Shiraishi, T., Suzuki, T., Takahashi, K., Kondo, Ki., Sakaki, H., Nishiuchi, M., Orikasa, T., Takayama, S., Amano, S., Nakanishi, K., Tachibana, M., Touchi, Y., Tsubomatsu, S., Nomura, S., 2023. Design of a compact superconducting accelerator for advanced heavy-ion therapy. Nucl. Instr. Meth. Phys. Res. A. 1053, 168312
[95] Xu, Z., Mao, R., Duan, L., She, Q., Hu, Z., Li, H., Lu, Z., Zhao, Q., Yang, H., Su, H., Lu, C., Hu, R., Zhang, J., 2013. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy. Nucl. Instr. Meth. Phys. Res. A. 729, 895-899
[96] Althoff, K.H., Bätzner, K., Drees, J., Febel, A., Gildemeister, O., Von Holtey, G., Knop, G., Lütter, P., Netter, H., Paul, W., Schittko, F.J., Schultz Von Dratzig, A., Stier, H.E., Weisse, E., 1968. The 2.5 GeV electron synchrotron of the university of Bonn. Nucl. Instr. Meth. 61, 1-30
[97] Almeida, A., Togno, M., Ballesteros-Zebadua, P., Franco-Perez, J., Geyer, R., Schaefer, R., Petit, B., Grilj, V., Meer, D., Safai, S., Lomax, T., Weber, DC., Bailat, C., Psoroulas, S., Vozenin, M.C., 2024. Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiother. Oncol. 190, 109953