簡易檢索 / 詳目顯示

研究生: 黃子軒
Huang, Zi Xuan
論文名稱: 人類粒線體第一蛋白質複合體中NDUFS7的功能研究及其對氧化磷酸化複合體組合的影響
Functional study of NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) and the effect of its deficiency on the assembly of mitochondrial OXPHOS complexes
指導教授: 高茂傑
Kao, Mou Chieh
口試委員: 張壯榮
Zhang, Zhuang Rong
周裕珽
Zhou, Yu Ting
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 70
中文關鍵詞: 粒線體第一蛋白質複合體
外文關鍵詞: Mitochondrion, NADH dehydrogenase
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NADH-dehydrogenase (ubiquinone) Fe-S protein 7,簡稱NDUFS7,為粒線體酵素複合體I中由細胞核基因所表現的核心蛋白,此蛋白具有一個 [4Fe-4S] 的鐵硫中心,可協助氧化磷酸化中電子的傳遞並伴隨細胞能量的產生,臨床上NDUFS7的缺失已經被發現與一些神經退化疾病例如Leigh症候群及躁鬱症相關。在近幾年的研究指出,由粒線體酵素複合體I~V所形成更大的複合體,有助維持結構穩定性及提升電子傳遞的效率。在本研究中使用核酸干擾 (RNAi) 技術抑制T-REx293細胞中NDUFS7的表現,且分析在NDUFS7缺失的情況下對細胞功能的影響。結果顯示在NDUFS7表現量減少的情況下會導致細胞耗氧率、粒線體膜電位、ATP合成量皆有下降以及酵素複合體I的活性降低。此外,對細胞有害的自由基及活性氧化物在粒線體中則有明顯的增加。另一方面,藉由HrCNE的分析中發現缺少NDUFS7和酵素複合體I中另一個核心蛋白NDUFV2皆會影響酵素複合體I的形成,連帶導致酵素複合體III或IV的減少。同時NDUFS7也參與維持由酵素複合體I、III、IV所組成的超複合體結構。這些結果都表示NDUFS7不但在電子傳遞的過程扮演著不可或缺的角色並且影響著這些酵素複合體及超複合體的組合。


    NADH-dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7), a highly conserved protein encoded by the nuclear DNA, is one of the core subunits in the mitochondrial NADH-coenzyme Q oxidoreductase (Complex I). It contains a tetranuclear iron-sulfur cluster N2 that assists electron transfer and serves as the final electron donor for ubiquinone and thus contributes to energy generation in the oxidative phosphorylation (OXPHOS) system. Mutations in NDUFS7 have been reported in patients suffering from neurodegenerative diseases such as Leigh syndrome and might also been assoicated with bipolar disorder. In addition to being present as an individual complex, the assembly of component OXPHOS complexes (Complex I~V) into several larger supercomplexes is considered to have functional significance not only for maintaining the stability of complexes but also for increasing the efficiency of electron transfer. In this study, we applied the RNA interference technique to suppress NDUFS7 expression in T-REx293 cells and then analyzed the obtained knockdown cell lines O10 and U21 with a series of functional assays. Our results showed that knockdown of NDUFS7 caused a significant decrease in the cellular oxygen consumption rate, mitochondrial membrane potential, ATP generation and Complex I activity. In addition, the amount of harmful reactive oxygen species was apparently increased in mitochondria. On the other hand, by conducting the high resolution clear native electrophoresis (HrCNE) analyses, we found that the deficiency of NDUFS7 or NDUFV2 influenced individual complex assembly and reduced the stability of Complex I subunits. By applying a milder condition for extraction of protein complexes from the mitochondrial samples, we also found that the deficiency of NDUFS7 could hamper supercomplex formation. Based on these findings, we conclude that NDUFS7 plays an indispensable role in maintaining the functions of electron transport chain and the assembly of individual Complex I, III, and IV and the supercomplex.

    •中文摘要…………………………………………………………………i •Abstracts……………………………………………………………ii •Table of contents………………………………………iii •List of figures and tables………………v •Abbreviations…………………………………………………vi •Introduction……………………………………………………1. •Materials and methods……………………………15. •Results…………………………………………………………………22. A. The functional analysis of T-REx293 and its derived NDUFS7 suppression cells A-1. The effect of shRNA-mediated depletion on the protein level of NDUFS7 in T- REx293………………………………………………………………22. A-2. The measurement of Complex I-induced oxygen consumption rate of T-REx293 and NDUFS7 knockdown cell lines…………………………22. A-3. Comparative analysis of Complex I activity in T-REx293 and NDUFS7 knockdown cell lines by spectrophotometric measurements and in-gel activity assay………………………………………………………………………23. A-4. The effect of NDUFS7 suppression on mitochondrial membrane potential (MMP)……………24. A-5. The effect of NDUFS7 suppression on the production of reactive oxygen species (ROS) ………………………………………………………………25. A-6. The effect of NDUFS7 suppression on ATP production………………26. B. Analysis of individual OXPHOS complexes and supercomplexes assembly in NDUFS7 and NDUFV2 knockdown cell lines B-1. The effect of NDUFS7 suppression on the stability of mitochondrial OXPHOS subunits and the assembly of individual complexes………………26. B-2. The effect of NDUFS7 suppression on OXPHOS supercomplex formation……………………………………………………………………28. B-3. The effect of NDUFV2 suppression on the stability of mitochondrial OXPHOS subunits and the assembly of individual complexes………………29. •Discussion………………………………………………………………31. •Figures………………………………………………………………………36. •Tables…………………………………………………………………………56. •References………………………………………………………………57. •Appendix……………………………………………………………………68.

    1. Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., Walford, G. A., Sugiana, C., Boneh, A., Chen, W. K., Hill, D. E., Vidal, M., Evans, J. G., Thorburn, D. R., Carr, S. A., and Mootha, V. K. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123
    2. Wang, H. Y., Baxter, C. F., Jr., and Schulz, H. (1991) Regulation of fatty acid beta-oxidation in rat heart mitochondria. Arch Biochem Biophys 289, 274-280
    3. Thress, K., Kornbluth, S., and Smith, J. J. (1999) Mitochondria at the crossroad of apoptotic cell death. J Bioenerg Biomembr 31, 321-326
    4. Elston, T., Wang, H., and Oster, G. (1998) Energy transduction in ATP synthase. Nature 391, 510-513
    5. Yu, E. P., and Bennett, M. R. (2014) Mitochondrial DNA damage and atherosclerosis. Trends in endocrinology and metabolism: TEM 25, 481-487
    6. Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) The architecture of respiratory complex I. Nature 465, 441-445
    7. Hatefi, Y. (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54, 1015-1069
    8. Gresser, M. J., Myers, J. A., and Boyer, P. D. (1982) Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. The Journal of biological chemistry 257, 12030-12038
    9. Pebay-Peyroula, E., and Brandolin, G. (2004) Nucleotide exchange in mitochondria: insight at a molecular level. Curr Opin Struct Biol 14, 420-425
    10. Kasamatsu, H., and Vinograd, J. (1974) Replication of circular DNA in eukaryotic cells. Annu Rev Biochem 43, 695-719
    11. Robinson, B. H. (1998) Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochimica et biophysica acta 1364, 271-286
    12. Triepels, R. H., Van Den Heuvel, L. P., Trijbels, J. M., and Smeitink, J. A. (2001) Respiratory chain complex I deficiency. American journal of medical genetics 106, 37-45
    13. Chinnery, P. F., Brown, D. T., Andrews, R. M., Singh-Kler, R., Riordan-Eva, P., Lindley, J., Applegarth, D. A., Turnbull, D. M., and Howell, N. (2001) The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. Brain : a journal of neurology 124, 209-218
    14. Loeffen, J. L., Smeitink, J. A., Trijbels, J. M., Janssen, A. J., Triepels, R. H., Sengers, R. C., and van den Heuvel, L. P. (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Human mutation 15, 123-134
    15. Vinothkumar, K. R., Zhu, J., and Hirst, J. (2014) Architecture of mammalian respiratory complex I. Nature 515, 80-84
    16. Friedrich, T., and Bottcher, B. (2004) The gross structure of the respiratory complex I: a Lego System. Biochimica et biophysica acta 1608, 1-9
    17. Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. (1998) Procaryotic complex I (NDH-1), an overview. Biochimica et biophysica acta 1364, 125-133
    18. Mathiesen, C., and Hagerhall, C. (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochimica et biophysica acta 1556, 121-132
    19. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75, 69-92
    20. Ohnishi, S. T., Salerno, J. C., and Ohnishi, T. (2010) Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I). Biochimica et biophysica acta 1797, 1891-1893
    21. Berrisford, J. M., and Sazanov, L. A. (2009) Structural basis for the mechanism of respiratory complex I. The Journal of biological chemistry 284, 29773-29783
    22. Baradaran, R., Berrisford, J. M., Minhas, G. S., and Sazanov, L. A. (2013) Crystal structure of the entire respiratory complex I. Nature 494, 443-448
    23. Hunte, C., Zickermann, V., and Brandt, U. (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329, 448-451
    24. Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., and Brandt, U. (2015) Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44-49
    25. Efremov, R. G., and Sazanov, L. A. (2011) Structure of the membrane domain of respiratory complex I. Nature 476, 414-420
    26. Lazarou, M., Thorburn, D. R., Ryan, M. T., and McKenzie, M. (2009) Assembly of mitochondrial complex I and defects in disease. Biochimica et biophysica acta 1793, 78-88
    27. Schulte, U., Fecke, W., Krull, C., Nehls, U., Schmiede, A., Schneider, R., Ohnishi, T., and Weiss, H. (1994) In vivo dissection of the mitochondrial respiratory NADH: ubiquinone oxidoreductase (complex I). Biochimica et biophysica acta 1187, 121-124
    28. Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T., and Weiss, H. (1992) Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J Mol Biol 227, 1032-1042
    29. Remacle, C., Barbieri, M. R., Cardol, P., and Hamel, P. P. (2008) Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 280, 93-110
    30. Kuffner, R., Rohr, A., Schmiede, A., Krull, C., and Schulte, U. (1998) Involvement of two novel chaperones in the assembly of mitochondrial NADH:Ubiquinone oxidoreductase (complex I). J Mol Biol 283, 409-417
    31. Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R., and Ryan, M. T. (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Molecular and cellular biology 27, 4228-4237
    32. Perales-Clemente, E., Fernandez-Vizarra, E., Acin-Perez, R., Movilla, N., Bayona-Bafaluy, M. P., Moreno-Loshuertos, R., Perez-Martos, A., Fernandez-Silva, P., and Enriquez, J. A. (2010) Five entry points of the mitochondrially encoded subunits in mammalian complex I assembly. Molecular and cellular biology 30, 3038-3047
    33. Yadava, N., Houchens, T., Potluri, P., and Scheffler, I. E. (2004) Development and characterization of a conditional mitochondrial complex I assembly system. The Journal of biological chemistry 279, 12406-12413
    34. Mimaki, M., Wang, X., McKenzie, M., Thorburn, D. R., and Ryan, M. T. (2012) Understanding mitochondrial complex I assembly in health and disease. Biochimica et biophysica acta 1817, 851-862
    35. Saada, A., Edvardson, S., Rapoport, M., Shaag, A., Amry, K., Miller, C., Lorberboum-Galski, H., and Elpeleg, O. (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82, 32-38
    36. Sugiana, C., Pagliarini, D. J., McKenzie, M., Kirby, D. M., Salemi, R., Abu-Amero, K. K., Dahl, H. H., Hutchison, W. M., Vascotto, K. A., Smith, S. M., Newbold, R. F., Christodoulou, J., Calvo, S., Mootha, V. K., Ryan, M. T., and Thorburn, D. R. (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83, 468-478
    37. Dunning, C. J., McKenzie, M., Sugiana, C., Lazarou, M., Silke, J., Connelly, A., Fletcher, J. M., Kirby, D. M., Thorburn, D. R., and Ryan, M. T. (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26, 3227-3237
    38. Vartak, R., Deng, J., Fang, H., and Bai, Y. (2015) Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly. Biochimica et biophysica acta 1852, 1531-1539
    39. Lenaz, G., and Genova, M. L. (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. American journal of physiology. Cell physiology 292, C1221-1239
    40. Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. The Journal of biological chemistry 237, 1676-1680
    41. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A., and Enriquez, J. A. (2008) Respiratory active mitochondrial supercomplexes. Molecular cell 32, 529-539
    42. Dudkina, N. V., Eubel, H., Keegstra, W., Boekema, E. J., and Braun, H. P. (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proceedings of the National Academy of Sciences of the United States of America 102, 3225-3229
    43. Acin-Perez, R., and Enriquez, J. A. (2014) The function of the respiratory supercomplexes: the plasticity model. Biochimica et biophysica acta 1837, 444-450
    44. Quarato, G., Piccoli, C., Scrima, R., and Capitanio, N. (2011) Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. Biochimica et biophysica acta 1807, 1114-1124
    45. Ramirez-Aguilar, S. J., Keuthe, M., Rocha, M., Fedyaev, V. V., Kramp, K., Gupta, K. J., Rasmusson, A. G., Schulze, W. X., and van Dongen, J. T. (2011) The composition of plant mitochondrial supercomplexes changes with oxygen availability. The Journal of biological chemistry 286, 43045-43053
    46. Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P. M., Calvo, E., Rodriguez-Hernandez, M. A., Navas, P., Cruz, R., Carracedo, A., Lopez-Otin, C., Perez-Martos, A., Fernandez-Silva, P., Fernandez-Vizarra, E., and Enriquez, J. A. (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567-1570
    47. Eubel, H., Jansch, L., and Braun, H. P. (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133, 274-286
    48. Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schagger, H. (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17, 7170-7178
    49. De los Rios Castillo, D., Zarco-Zavala, M., Olvera-Sanchez, S., Pardo, J. P., Juarez, O., Martinez, F., Mendoza-Hernandez, G., Garcia-Trejo, J. J., and Flores-Herrera, O. (2011) Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V. The Journal of biological chemistry 286, 23911-23919
    50. Schagger, H., and Pfeiffer, K. (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19, 1777-1783
    51. Chance, B., and Williams, G. R. (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176, 250-254
    52. Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G., and Genova, M. L. (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 19, 1469-1480
    53. Bianchi, C., Genova, M. L., Parenti Castelli, G., and Lenaz, G. (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. The Journal of biological chemistry 279, 36562-36569
    54. Stroh, A., Anderka, O., Pfeiffer, K., Yagi, T., Finel, M., Ludwig, B., and Schagger, H. (2004) Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. The Journal of biological chemistry 279, 5000-5007
    55. Acin-Perez, R., Bayona-Bafaluy, M. P., Fernandez-Silva, P., Moreno-Loshuertos, R., Perez-Martos, A., Bruno, C., Moraes, C. T., and Enriquez, J. A. (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Molecular cell 13, 805-815
    56. Li, Y., D'Aurelio, M., Deng, J. H., Park, J. S., Manfredi, G., Hu, P., Lu, J., and Bai, Y. (2007) An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. The Journal of biological chemistry 282, 17557-17562
    57. Budde, S. M., van den Heuvel, L. P., Janssen, A. J., Smeets, R. J., Buskens, C. A., DeMeirleir, L., Van Coster, R., Baethmann, M., Voit, T., Trijbels, J. M., and Smeitink, J. A. (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275, 63-68
    58. Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O., and Enriquez, J. A. (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell metabolism 16, 378-386
    59. Moreno-Lastres, D., Fontanesi, F., Garcia-Consuegra, I., Martin, M. A., Arenas, J., Barrientos, A., and Ugalde, C. (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell metabolism 15, 324-335
    60. Zhang, M., Mileykovskaya, E., and Dowhan, W. (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. The Journal of biological chemistry 280, 29403-29408
    61. Strogolova, V., Furness, A., Robb-McGrath, M., Garlich, J., and Stuart, R. A. (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Molecular and cellular biology 32, 1363-1373
    62. Dienhart, M. K., and Stuart, R. A. (2008) The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell 19, 3934-3943
    63. Dudkina, N. V., Kudryashev, M., Stahlberg, H., and Boekema, E. J. (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proceedings of the National Academy of Sciences of the United States of America 108, 15196-15200
    64. Vogel, R. O., Janssen, R. J., van den Brand, M. A., Dieteren, C. E., Verkaart, S., Koopman, W. J., Willems, P. H., Pluk, W., van den Heuvel, L. P., Smeitink, J. A., and Nijtmans, L. G. (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21, 615-624
    65. Vartak, R., Porras, C. A., and Bai, Y. (2013) Respiratory supercomplexes: structure, function and assembly. Protein & cell 4, 582-590
    66. Friedrich, T., Steinmuller, K., and Weiss, H. (1995) The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS letters 367, 107-111
    67. Hyslop, S. J., Duncan, A. M., Pitkanen, S., and Robinson, B. H. (1996) Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics 37, 375-380
    68. Ohnishi, T. (1998) Iron-sulfur clusters/semiquinones in complex I. Biochimica et biophysica acta 1364, 186-206
    69. Hayashi, T., and Stuchebrukhov, A. A. (2010) Electron tunneling in respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America 107, 19157-19162
    70. Duarte, M., Populo, H., Videira, A., Friedrich, T., and Schulte, U. (2002) Disruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis. The Biochemical journal 364, 833-839
    71. Janssen, R. J., Nijtmans, L. G., van den Heuvel, L. P., and Smeitink, J. A. (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29, 499-515
    72. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2, 342-352
    73. Lebon, S., Rodriguez, D., Bridoux, D., Zerrad, A., Rotig, A., Munnich, A., Legrand, A., and Slama, A. (2007) A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab 90, 379-382
    74. Lebon, S., Minai, L., Chretien, D., Corcos, J., Serre, V., Kadhom, N., Steffann, J., Pauchard, J. Y., Munnich, A., Bonnefont, J. P., and Rotig, A. (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 92, 104-108
    75. Ahlers, P. M., Garofano, A., Kerscher, S. J., and Brandt, U. (2000) Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochimica et biophysica acta 1459, 258-265
    76. Hattori, N., Suzuki, H., Wang, Y., Minoshima, S., Shimizu, N., Yoshino, H., Kurashima, R., Tanaka, M., Ozawa, T., and Mizuno, Y. (1995) Structural organization and chromosomal localization of the human nuclear gene (NDUFV2) for the 24-kDa iron-sulfur subunit of complex I in mitochondrial respiratory chain. Biochem Biophys Res Commun 216, 771-777
    77. Yano, T., Sled, V. D., Ohnishi, T., and Yagi, T. (1996) Expression and characterization of the flavoprotein subcomplex composed of 50-kDa (NQO1) and 25-kDa (NQO2) subunits of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. The Journal of biological chemistry 271, 5907-5913
    78. Hinchliffe, P., and Sazanov, L. A. (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309, 771-774
    79. Almeida, T., Duarte, M., Melo, A. M., and Videira, A. (1999) The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem 265, 86-93
    80. Pilkington, S. J., and Walker, J. E. (1989) Mitochondrial NADH-ubiquinone reductase: complementary DNA sequences of import precursors of the bovine and human 24-kDa subunit. Biochemistry 28, 3257-3264
    81. Liu, H. Y., Liao, P. C., Chuang, K. T., and Kao, M. C. (2011) Mitochondrial targeting of human NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) and its association with early-onset hypertrophic cardiomyopathy and encephalopathy. J Biomed Sci 18, 29
    82. Cardol, P., Vanrobaeys, F., Devreese, B., Van Beeumen, J., Matagne, R. F., and Remacle, C. (2004) Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochimica et biophysica acta 1658, 212-224
    83. Bruggemann, H., Falinski, F., and Deppenmeier, U. (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267, 5810-5814
    84. Hattori, N., Yoshino, H., Tanaka, M., Suzuki, H., and Mizuno, Y. (1998) Genotype in the 24-kDa subunit gene (NDUFV2) of mitochondrial complex I and susceptibility to Parkinson disease. Genomics 49, 52-58
    85. Kim, S. H., Vlkolinsky, R., Cairns, N., Fountoulakis, M., and Lubec, G. (2001) The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer's disease. Life Sci 68, 2741-2750
    86. Nakatani, N., Hattori, E., Ohnishi, T., Dean, B., Iwayama, Y., Matsumoto, I., Kato, T., Osumi, N., Higuchi, T., Niwa, S., and Yoshikawa, T. (2006) Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Human molecular genetics 15, 1949-1962
    87. Karry, R., Klein, E., and Ben Shachar, D. (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55, 676-684
    88. Kerscher, S., Benit, P., Abdrakhmanova, A., Zwicker, K., Rais, I., Karas, M., Rustin, P., and Brandt, U. (2004) Processing of the 24 kDa subunit mitochondrial import signal is not required for assembly of functional complex I in Yarrowia lipolytica. Eur J Biochem 271, 3588-3595
    89. Benit, P., Beugnot, R., Chretien, D., Giurgea, I., De Lonlay-Debeney, P., Issartel, J. P., Corral-Debrinski, M., Kerscher, S., Rustin, P., Rotig, A., and Munnich, A. (2003) Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Human mutation 21, 582-586
    90. Solaini, G., Sgarbi, G., Lenaz, G., and Baracca, A. (2007) Evaluating mitochondrial membrane potential in cells. Bioscience reports 27, 11-21
    91. Distelmaier, F., Visch, H. J., Smeitink, J. A., Mayatepek, E., Koopman, W. J., and Willems, P. H. (2009) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency. Journal of molecular medicine 87, 515-522
    92. Valsecchi, F., Monge, C., Forkink, M., de Groof, A. J., Benard, G., Rossignol, R., Swarts, H. G., van Emst-de Vries, S. E., Rodenburg, R. J., Calvaruso, M. A., Nijtmans, L. G., Heeman, B., Roestenberg, P., Wieringa, B., Smeitink, J. A., Koopman, W. J., and Willems, P. H. (2012) Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. Biochimica et biophysica acta 1817, 1925-1936
    93. Brand, M. D. (2010) The sites and topology of mitochondrial superoxide production. Experimental gerontology 45, 466-472
    94. Valsecchi, F., Grefte, S., Roestenberg, P., Joosten-Wagenaars, J., Smeitink, J. A., Willems, P. H., and Koopman, W. J. (2013) Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology. Mitochondrion 13, 436-443
    95. Verkaart, S., Koopman, W. J., van Emst-de Vries, S. E., Nijtmans, L. G., van den Heuvel, L. W., Smeitink, J. A., and Willems, P. H. (2007) Superoxide production is inversely related to complex I activity in inherited complex I deficiency. Biochimica et biophysica acta 1772, 373-381
    96. Fato, R., Bergamini, C., Bortolus, M., Maniero, A. L., Leoni, S., Ohnishi, T., and Lenaz, G. (2009) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochimica et biophysica acta 1787, 384-392
    97. Triepels, R. H., van den Heuvel, L. P., Loeffen, J. L., Buskens, C. A., Smeets, R. J., Rubio Gozalbo, M. E., Budde, S. M., Mariman, E. C., Wijburg, F. A., Barth, P. G., Trijbels, J. M., and Smeitink, J. A. (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Annals of neurology 45, 787-790
    98. Ugalde, C., Triepels, R. H., Coenen, M. J., van den Heuvel, L. P., Smeets, R., Uusimaa, J., Briones, P., Campistol, J., Majamaa, K., Smeitink, J. A., and Nijtmans, L. G. (2003) Impaired complex I assembly in a Leigh syndrome patient with a novel missense mutation in the ND6 gene. Annals of neurology 54, 665-669
    99. Prieur, I., Lunardi, J., and Dupuis, A. (2001) Evidence for a quinone binding site close to the interface between NUOD and NUOB subunits of Complex I. Biochimica et biophysica acta 1504, 173-178
    100. Ugalde, C., Janssen, R. J., van den Heuvel, L. P., Smeitink, J. A., and Nijtmans, L. G. (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Human molecular genetics 13, 659-667
    101. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. The Biochemical journal 417, 1-13
    102. Lenaz, G., Baracca, A., Carelli, V., D'Aurelio, M., Sgarbi, G., and Solaini, G. (2004) Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochimica et biophysica acta 1658, 89-94
    103. Genova, M. L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti Castelli, G., and Lenaz, G. (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS letters 505, 364-368
    104. Carroll, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2013) Post-translational modifications near the quinone binding site of mammalian complex I. The Journal of biological chemistry 288, 24799-24808
    105. Yusnita, Y., Norsiah, M. D., and Rahman, A. J. (2010) Mutations in mitochondrial NADH dehydrogenase subunit 1 (mtND1) gene in colorectal carcinoma. The Malaysian journal of pathology 32, 103-110
    106. Koopman, W. J., Verkaart, S., Visch, H. J., van der Westhuizen, F. H., Murphy, M. P., van den Heuvel, L. W., Smeitink, J. A., and Willems, P. H. (2005) Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth. American journal of physiology. Cell physiology 288, C1440-1450
    107. Distelmaier, F., Koopman, W. J., van den Heuvel, L. P., Rodenburg, R. J., Mayatepek, E., Willems, P. H., and Smeitink, J. A. (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain : a journal of neurology 132, 833-842
    108. Forkink, M., Manjeri, G. R., Liemburg-Apers, D. C., Nibbeling, E., Blanchard, M., Wojtala, A., Smeitink, J. A., Wieckowski, M. R., Willems, P. H., and Koopman, W. J. (2014) Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochimica et biophysica acta 1837, 1247-1256
    109. Rafikov, R., Sun, X., Rafikova, O., Meadows, M. L., Desai, A. A., Khalpey, Z., Yuan, J. X., Fineman, J. R., and Black, S. M. (2015) Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox biology 6, 278-286
    110. Lim, S. C., Hroudova, J., Van Bergen, N. J., Lopez Sanchez, M. I., Trounce, I. A., and McKenzie, M. (2016) Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB journal : official publication of the Federation of American Societies for Experimental Biology
    111. Moreno-Loshuertos, R., Acin-Perez, R., Fernandez-Silva, P., Movilla, N., Perez-Martos, A., Rodriguez de Cordoba, S., Gallardo, M. E., and Enriquez, J. A. (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nature genetics 38, 1261-1268
    112. Diaz, F., Fukui, H., Garcia, S., and Moraes, C. T. (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Molecular and cellular biology 26, 4872-4881

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE