研究生: |
賴國貞 Guo-Zhen Lai |
---|---|
論文名稱: |
數位化功率因數校正電路內之類比數位轉換器最佳化設計 The Optimum Design of A/D Converter for Digital Power Factor Correction Application |
指導教授: |
龔正 博士
Prof. Jeng Gong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 類比數位轉換器 、連續近似 、功率因數校正 |
外文關鍵詞: | analog to digital converter, successive approximation, Power Factor Correction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計了一個10位元,1MHz取樣頻率的連續近似類比至數位轉換器。主要子電路包含了電容陣列(capacitor array)、比較器(comparator)、數位控制電路(digital control circuit)、類比開關與時脈產生器(clock generator)等。在電容陣列設計上,改良了兩段式電容陣列成為多段式電容陣列,可以使電容陣列所佔據晶片面積再進一步減少。在比較器設計考量上,為了增加精確度,採用運算放大器、類比開關與電容,配合適當的時脈操作,可用來當比較器使用,並可將輸入偏移電壓消除,增加類比至數位轉換器之精確度。本類比至數位轉換器以TSMC 2P4M 0.35微米CMOS製程技術來實現,並經由HSPICE模擬驗證。根據模擬結果顯示,當輸入100kHz的正弦波且取樣頻率1MHz時,SNDR等於55.338dB,相當於8.9-bit的有效位元。整個類比至數位轉換器所佔晶片面積約為0.4 x 0.5mm2,消耗功率為1.7mW。
本論文所設計之連續近似類比數位轉換器,目的在於當成數位化功因校正電路內,數位與類比電路之介面。並使用HSPICE對整個數位化功因校正電路進行模擬,完成功率因數達0.99以上,且全載時總諧波失真為2.46%,同時符合IEEE等國際標準。
[1] Martin Rowe, ”Who do ADCs Work?,” Test & Measurement World, July 2002.
[2] B. Razavi, “Principle of Data Conversion System Design”, IEEE Press, 1995.
[3] Tanja C. Hofner, “Defining And Testing Dynamic ADC parameters”, Microwave& RF, pp.75-94,2000.
[4] Andrew G. F. Dingwall, “Monolithic Expandable 6 Bit 20 MHz CMOS/SOS A/D Converter”, IEEE Journal of Solid-State Circuits, Vol. 14, Issue 6, Dec 1979.
[5] Yoji Yoshii Katsuaki Asano, Minoru Nakamura, and Chikara Yamada, ”An 8 Bit, 100 ins/s Flash ADC”, IEEE Journal of Solid-State Circuits, Vol. SC-19, NO. 6, Dec. 1984.
[6] Joey Doernberg and David A. Hodges,” A 10-bit 5Msample/sec 2-Step Flash ADC”, Custom Integrated Circuits Conference, 1988., Proceedings of the IEEE 1988 16-19 May 1988.
[7] A. Cremonesi, F. Maloberti, G. Torelli, C. Vacchi, ”An 8-bit Two-step Flash A/D Converter for Video Applications”, Custom Integrated Circuits Conference, 1989., Proceedings of the IEEE 1989 15-18 May 1989.
[8] Andrew M. Abo and Paul R. Gray, ”A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter”, IEEE Journal of Solid-State Circuits, Vol. 34, No. 5, May 1999.
[9] Stephen H. Lewis Andpaul R. Gray, ”A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter”, IEEE Journal of Solid-State Circuits,Vol. SC-22,No. 6, Dec. 1987.
[10] Shu -Yuan Chin and Chung-Yu Wu, ”A CMOS Ratio-Independent and Gain-Insensitive Algorithmic Analog-to-Digital Converter”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 8, AUG. 1996
[11] David A. Johns, ”Analog Integrated Circuit Design”,1997.
[12] Adib R. Hamade, ”A Single Chip All-MOS 8-Bit A/D Converter”, IEEE Journal of Solid-State Circuits, Volume 13, Issue 6, Dec. 1978.
[13] Thomas P. Redfern, Joseph J. Connolly, JR., Sing W. Chin, and Thomas M. Frederiksen, ”A Monolithic Charge-Balancing Successive Approximation A/D Technique”, IEEE Journal of Volume 14, Issue 6, Dec 1979.
[14] Ricardo E. Suarez, Paul R. Gray, ”All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques–-Part II”, IEEE Journal of Solid-State Circuits, Volume 10, Issue 6, Dec 1975.
[15] Kanti Bacrania,” A 12-bit ADC Successive-Approximation-Typewith Digital Error Correction”, IEEE Journal of Solid-State Circuits, Volume 21, Issue 6, Dec. 1986.
[16] Neubauer, H.; Desel, T.; Hauer, H, ”A successive approximation A/D converter with 16 bit 200 kS/s in 0.6μm CMOS using self calibration and low power techniques”, Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on Volume 2, 2-5 Sept. 2001.
[17] James L. McCreary, Paul R. Gray, ”All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques—Part I, Solid-State Circuits, IEEE Journal of Volume 10, Issue 6, Dec 1975.
[18] Y.S. Yee, L. M. Terman, and L.G. Heller, ”A Two-Stage Weighted Capacitor Network for D/A-A/D Conversion”, IEEE Journal of Solid State Circuit, Vol.SC-14, No. 4, August 1979.
[19] Phillip E. Allen, ”CMOS Analog Circuit Design”2002.
[20]陳俊勝,”數位邏輯設計”, 儒林圖書,民國88年3月.
[21] Wang, Z., ”A CMOS four-quadrant analog multiplier with single-ended voltage output and improved temperature performance,” Solid-State Circuits, IEEE Journal of , Volume: 26 , Issue: 9 , Sept. 1991.
[22] Lee, G.B.; Chan, P.K.; Siek, L, ”A CMOS phase frequency detector for charge pump phase-locked loop,” Circuits and Systems, 1999. 42nd Midwest Symposium on , Volume: 2 , 8-11 Aug. 1999.
[23] Kuo-Hsing Cheng; Tse-Hua Yao; Shu-Yu Jiang; Wei-Bin Yang, ”A difference detector PFD for low jitter PLL,” Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on , Volume: 1 , 2-5 Sept. 2001.
[24] Hee-Tae Ahn; Allstot, D.J., ”A low-jitter 1.9-V CMOS PLL for UltraSPARC microprocessor applications,” IEEE Journal of Solid-State Circuits, , Volume: 35 , Issue: 3 , March 2000.
[25] Alan Hastings, ”The ART of ANALOG LAYOUT”,2001.