研究生: |
蔡翠玲 Tsai, Tsuey-Lin |
---|---|
論文名稱: |
微波消化系統應用於高分子材料分解之動力學研究 Research on the Kinetics of Polymer Decomposition Using Microwave Digestion System |
指導教授: |
朱鐵吉
Chu, Tieh-Chi |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 動力學 、數值模擬 、微波消化 、聚甲基丙烯酸甲酯 、高分子 、照射 |
外文關鍵詞: | kinetics,, mathematical modelling, microwave digestion, poly(methyl methacrylate), polymers, irradiation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以紅外線光譜、掃描式電子顯微鏡、高效率液相層析示差折光檢測器之特徵化分析及重量損失法探討聚甲基丙烯酸甲酯(PMMA)之三種不同分子量之高分子材料在微波加速反應系統之熱分解行為,首創建立ㄧ簡化、新穎之消化動力學模式-零級與ㄧ級反應。利用牛頓逼近法,將PMMA由微波消化分解之殘餘重量的實驗結果相當逼近此動力學模式。對於較低的消化溫度(423-443K)下,主要進行零級反應;而ㄧ級反應則在較高的溫度下進行(≥453K)。聚甲基丙烯酸甲酯在423K-453K溫度間,其分解機制經由主鏈(453K)與側鏈(423K-443K)裂解反應,透過此經驗模式,計算出動力學參數,包含反應速率常數與質量分率(α)。根據阿瑞尼士方程式,對於PMMA 分子量為996,000 g/mol的零級與ㄧ級分解反應,其平均活化能分別為2.63與25.25 kcal/mol;對於PMMA分子量為350,000 g/mol的零級與ㄧ級分解反應,其平均活化能分別為0.76與35.97 kcal/mol;對於PMMA分子量為120,000 g/mol的零級與ㄧ級分解反應,其平均活化能分別為1.79與29.18 kcal/mol。此外,對於PMMA 分子量為996,000 g/mol的零級與ㄧ級分解反應,其平均碰撞頻率分別為2.4×10-2 g min-1與2.50×1012 min-1;對於PMMA分子量為350,000 g/mol的零級與ㄧ級分解反應,其平均碰撞頻率分別為2.33×10-3 g min-1 與 9.31×1017 min-1;對於PMMA分子量為120,000 g/mol的零級與ㄧ級分解反應,其平均碰撞頻率分別為8.5×10-3 g min-1與3.72×1014 min-1。
本實驗亦對硝酸體積在423K-473K溫度間。探討對聚甲基丙烯酸甲酯三種不同分子量之分解效應影響。在溫度為473K,硝酸體積大於3mL時,對PMMA 996,000 與 350,000 g/mol分子量而言,消化效率達到100%,其原因來自於硝酸之氧化能力。對PMMA 120,000 g/mol分子量而言,當硝酸體積大於3mL時,消化效率亦幾乎達到100%。對350,000 g/mol分子量而言,硝酸體積為2-7mL,溫度為423K、443K與453K時,估算之質量分率(α)隨硝酸體積增加而增加,但溫度到達473K,α值隨著酸體積變化卻不明顯。同理,對於PMMA 996,000 與 120,000 g/mol分子量而言,溫度為423K與443K時,估計之α值隨著酸體積增加而上升,但溫度在453K與473K時,α值的改變卻不顯著。
A simplified and novel kinetic model was firstly developed in this study by way of characterization of Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), high performance liquid chromatography (HPLC) with refractive index detector (RID) and the weight-loss method for PMMA decomposition under microwave assisted digestion system. By Newton’s approximation method, the experimental results of the remaining weight of PMMA were closely fitted by the model combined with zero-order and first-order kinetics, in which the former dominated the reaction at lower temperatures (423-443K) and the latter at higher temperatures (≥453K). Kinetic parameters of PMMA decomposition under 423-453K including rate constants and the mass fractions (α) via main-chain (453K) and side-chin (423K-443K) scission were determined by this empirical model. The average activation energies of PMMA 996,000 g/mol decomposition estimated by Arrhenius equation were 2.63 and 25.25 kcal/mol for the zero- and first-order reactions, respectively. For PMMA 350,000 g/mol, 0.76 and 35.97 kcal/mol were estimated for the zero- and first-order reaction, respectively. For PMMA 120,000 g/mol, 1.79 and 29.18 kcal/mol were obtained for the zero- and first-order reaction, respectively. In addition, the average pre-exponential factors of the respective zero- and first-order reactions for PMMA 996,000 g/mol were 2.4×10-2 g min-1 and 2.50×1012 min-1 respectively. For PMMA 350,000 g/mol, 2.33×10-3 g min-1 and 9.31×1017 min-1 were calculated for the respective zero- and first-order reactions. For PMMA 120,000 g/mol, 8.5×10-3 g min-1 and 3.72×1014 min-1 were obtained for the zero- and first-order reaction, respectively.
Effect of HNO3 volume on PMMA decomposition was further investigated at 423-473K for three different molecular weights of PMMAs. At 473K, the digestion efficiency increased to 100% as HNO3 volume was ≥3 mL for PMMA 996,000 and 350,000 g/mol, respectively. This was due to the increase of oxidizing potential of HNO3. For PMMA 120,000 g/mol, the decomposition was also almost completely digested (100%) when the amount of HNO3 was >3 mL. The estimated α values for the decomposition of PMMA 350,000 g/mol with 2-7 mL of HNO3 were increasing with HNO3 volume at 423, 443K and 453K, yet varying insignificantly at 473K. The predicted α values for the decomposition of PMMA 996,000 and 120,000 g/mol were also increasing with HNO3 volume at 423 and 443K, but not apparently varied at 453 and 473K.
Arisawa, H., Brill, T.B., 1997. Kinetics and mechanisms of flash pyrolysis of poly (methyl methacrylate) (PMMA). Combustion and Flame, 109, 415-426.
Atsunori, T., Takeshi, H., Hiroshi, Y., Masatsugu S., 2008. Hemispherical polymer nano-particles of polyisoprene–poly(methyl methacrylate) blend with core–shell structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313-314, 332-334.
Brady, .J.E., Sense, F. 2004. Chemistry. Wiley, New York, p.439.
Brauner, N., Shacham, M., 1997. Statistical analysis of linear and nonlinear correlation of the Arrhenius equation constants. Chemical Engineering and Processing, 36, 243-249.
Chang, Y.C., Chu, T.C., 2003. Research on nano-material synthesis, self-assembling and decomposition mechanism with microwave heating technology. Master thesis, National Tsing-Hua University, Taiwan, R.O.C., pp. 92-94.
Costache, M.C., Wang, D., Heidecker, M.J., Manias, E., Wilkie, C.A., 2006. The thermal degradation of poly (methyl methacrylate) nanocomposites with Montmorillonite, layered doubled hydroxides and carbon nanotubes. Polymers for advanced technologies, 17, 272-280.
Denq, B.L., Hu, Y.S., Chiu, W.Y., Chen, L.W., Chiu, Y.S., 1997a. Thermal degradation behavior and physical properties for poly(methyl methacrylate) blended with propyl ester phosphazene. Polymer Degradation and Stability, 57, 269-278.
Denq, B.L., Chiu, W.Y., Lin, K.F., 1997b. Kinetic model of thermal degradation of polymers for nonisothermal process. Journal of Applied Polymer Science, 66, 1855-1868.
Epov, V.N., Benkhedda, K., Evans, R.D., 2005. Determination of Pu isotopes in vegetation using a new on-line FI-ICP-DRC-MS protocol after microwave digestion. Journal of Analytical Atomic Spectrometry, 20, 990-992.
Ferriol, M., Gentilhomme, A., Cochez, M., Oget, N., Mieloszynski, J.L., 2003. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polymer Degradation and Stability, 79, 271-281.
Fordham, P.J., Gramshaw, J.W., Castle, L., Crews, H.M., Thompson, D., Parry, S.J., McCurdy, E., 1995. Determination of trace elements in food contact polymers by semi-quantitative inductively coupled plasma mass spectrometry. Performance evaluation using alternative multi-element techniques and in-house polymer reference materials. Journal of Analytical Atomic Spectrometry, 10, 303-309.
Gao, Z., Kaneko, T., Hou, D., Nakada, M., 2004. Kinetics of thermal degradation of poly (methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polymer Degradation and Stability, 84, 399-403.
Holland, B.J., Hay, J.N., 2001. The kinetics and mechanisms of the thermal degradation of poly (methyl methacrylate) studied by thermal analysis-Fourier Transform Infrared Spectroscopy. Polymer, 42, 4825-4835.
Holland, B.J., Hay, J.N., 2002. The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polymer Degradation and Stability, 77, 435-439.
Horace, H., 2002. Thermocouples v.s Thermistor. http://www.mtaonline.net/~hheffner/Thermo.pdf
Inaba, A., Kashiwagi, T., Brown, E.J., 1988. Effects of initial molecular weight on thermal degradation of poly(methyl methacrylate). Part 1. Model 1. Polymer Degradation and Stability, 21, 1-20.
Jacobsen, N.L., Mitchell, D.L., Johnson, D.L., Holt, R.A., 1997. Lased and sandblasted denture base surface preparations affecting resilient liner bonding. Journal of Prosthetic Dentistry, 78, 153-158.
Kang, B.S., Kim, S.G., Kim, J.S., 2008. Thermal degradation of poly(methyl methacrylate) polymers: Kinetics and recovery of monomers using a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 81, 7-13.
Kashiwagi, T., Inaba, A., Brown, E.J., 1986. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules, 19, 2160-2168.
Kashiwagi, T., Inaba, A., 1989. Behavior of primary radicals during thermal degradation of poly(methyl methacrylate). Polymer Degradation and Stability, 26, 161-184.
Kathryn, J.L., Steve, J.H., 1998. Microwave digestion procedures for environmental matrices. Critical review. Analyst, 123, 103R -133R.
Klun, U., Kržan, A., 2000. Rapid microwave induced deploymerization of polyamide-6. Polymer, 41, 4361-4365.
Krejza, O., Velická, J., Sedlaříková, M., Vondrák J., 2008. The presence of nanostructured Al2O3 in PMMA-based gel electrolytes. Journal of Power Sources, 178(2), 774-778.
Kržan, A., 1998. Microwave irradiation as an energy source in poly(ethyleneterephthalate) solvolysis. Journal of applied polymer science, 69 (6), 1115-1198.
Kuo, S.W., Kao, HC., Chang, F.C., 2003. Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer, 44, 6873-6882.
Levine, I.N., 1988a. Physical Chemistry. McGraw-Hill, Singapore, pp. 438-439.
Levine, I.N., 1988b. Physical Chemistry. McGraw-Hill, Singapore, pp. 524, 576.
Levine, I.N., 1988c. Physical Chemistry. McGraw-Hill, Singapore, p.516.
Levine, I.N., 1988d. Physical Chemistry. McGraw-Hill, Singapore, p.539.
Liu, L.X., Zhang, D., An L.J., Zhang, H.Y., Tian, Y.G., 2005. Hydrolytic depolymerization of poly(ethyleneterephthalate) under microwave irradiation. Journal of applied polymer science, 95 (3), 719-723.
Madras, G., Karmore, V., 2001. Continuous distribution kinetics for oxidative degradation of PMMA in Solution. Polymer Degradation and Stability, 72(3), 537-541.
Madras, G., Smith, J.M., McCoy, B.J., 1996. Degradation of poly (methyl methacrylate) in solution. Industrial & Engineering Chemistry Research, 35, 1795-2074.
Manring, L.E., 1988. Thermal degradation of saturated poly(methyl methacrylate) Macromolecules, 21(2), 528-530.
Manring, L.E., 1991. Thermal degradation of poly(methyl methacrylate). 4. Random side group scission. Macromolecules, 24(11), 3304-3309.
Marimuthu, A., Madras, G., 2007. Effect of alkyl-group substituents on the degradation of poly(alkyl methacrylates) in supercritical fluids. Industrial & Engineering Chemistry Research, 46, 15-21.
Market Researches and Consulting, Ltd.
<http://mcgroup.co.uk/researches/P/171/Polymethyl%20Methacrylate%20(Organic%20Glass)%20Market%20Research.html>
Matuslewicz, H., 1994. Development of a high pressure/temperature focused microwave heated teflon bomb for sample preparation. Analytical Chemistry, 66, 751-755.
McCoy, B.J., Madras, G., 2001. Discrete and continuous models for polymerization and depolymerization. Chemical Engineering Science, 56(8), 2831-2836.
Merten, D., Broekaert, J.A.C., Brandt, R., Jakubowski, N., 1999. Analysis of ZrO2 powders by microwave assisted digestion at high pressure and ICP atomic spectrometry. Journal of Analytical Atomic Spectrometry, 14, 1093-1098.
Mesko, M.F., Moraes, D.P., Barin, J.S., Dressler, V.L., Knapp, G., Flores, E.M.M., 2006. Digestion of biological materials using the microwave-assisted sample combustion technique. Microchemical Journal, 82, 183-188.
Mishra, S., Zope, V.S., Goje, A.S., 2003. Kinetics and thermodynamics of hydrolytic deploymerization of Poly (ethylene terephthalate) at high pressure and temperature. Journal of Applied Polymer Science, 90, 3305.
Nakajima, M., Yoshikawa, T., Sogo K., Hirai, Y., 2006. Fabrication of multi-layered nano-channels by reversal imprint lithography. Microelectronic Engineering, 83, 876-879.
PlasticsEurope (Association of Plastics Manufacturers)<http://www.plasticseurope.org>.
Neas, E., 1992. Basic Theoretical Considerations in Microwave Chemistry. In Congress Proceedings: First World Congress on Microwave Chemistry, Clifton, Virginia: International Microwave Power Institute.
Reddy, M.S., Kurose K., Okuda, T., Nishijima, W. and Okada, M., 2007. Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation. Journal of Hazardous materials, 147(3), 1051-1055.
Reiter, J., Vondrák, J., Mička, Z., 2007. Solid-state Cd/Cd2+ reference electrode based on PMMA gel electrolytes. Solid State Ionics, 177(39-40), 3501-3506.
Saastad, O.W., Uggerud, E., 1991. Simulation of the kinetics of a chemical system as a method for determination of rate constants from experimental data. Physica Scripta, T38, 88-90.
Sarantopoulou, E., Kollia, Z., Cefalas, A.C., Manoli, K., Sanopoulou, M., Goustouridis, D., Chatzandroulis, S., Raptis I., 2008. Surface nano/micro functionalization of PMMA thin films by 157 nm irradiation for sensing applications. Applied Surface Science, 254(6), 1710-1719.
Schwaab, M., Pinto, J.C., 2007. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chemical Engineering Science, 62, 2750-2764.
Singh, H.P., Kumar, R., Sekhon, S.S., 2005. Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3. Bulletin of Materials Science, 28(5), 467-472.
Smith, F.E., Arsenault, E.A., 1996. Microwave-assisted sample preparation in analytical chemistry. Talanta, 43, 1207-1268.
Stoliarov, S.I., Westmoreland, P.R., Nyden, M.R., Forney, G.P., 2003. A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly (methyl methacrylate). Polymer, 44 (3), 883-894.
Sun, Y.C., Ko, C.J., 2004. Evaluation of closed-vessel microwave digestion method for the determination of trace impurities in polymer-based photoresist by inductively coupled plasma mass spectrometry. Microchemical Journal, 78, 163-166.
Taguenang, J.M., Kassu, A., Ruffin, P.B., Brantley, C., Edwards, E., Sharma, A., 2008. Reversible UV degradation of PMMA plastic optical fibers. Optics Communication, 281, 2089-2092.
Tao, C.Y., Long, Z., Liu Z.H., Du, J., Xu, J.H., 2007. Microwave-assisted degradation of poly(ethyleneterephthalate) under mild conditions. Journal of Central South University Technology, 14 (S3), 453-457.
Tu, W.X., Liu, H.F., 2000a. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 10, 2207-2211.
Tu, W.X., Liu, H.F., 2000b. Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chemistry of Materials, 12(2), 564-567.
Wondraczek, K., Adams, J., Fuhrmann, J., 2002. Change of tacticity during thermal degradation of PMMA. Macromolecular Chemistry and Physics, 203, 2624-2629.
Yang, H., Huang, M., Wu, J., Lan, Z., Hao, S., Lin, J., 2008. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Materials Chemistry and Physics, 110(1), 38-42.
Zeng, W.R., Li, S.F., Chow, W.K., 2003. Study of the combustion mechanism of poly (methyl methacrylate). Polymer Material Science and Engineering (Chinese edition), 19, 183-186.
Zhen, C., Wanquan, J., Xingzhu, Y., Xinglong, G., 2008. Preparation of superparamagnetic Fe3O4/PMMA nano composites and their magnetorheological characteristics. Journal of Magnetism and Magnetic Materials, 320(8), 1499-1502.
Zong, L., Zhou, S., Sgriccia, N., Hawley, M.C., Kempel, L.C., 2003. A review of microwave-assisted polymer chemistry (MAPC). Journal of Microwave Power & Electromagnetic Energy, 38(1), 49-74.