簡易檢索 / 詳目顯示

研究生: 黃凱易
Kay Huang
論文名稱: 具有ONO間隙壁結構之0.25微米製程金氧半電晶體其熱載子效應分析
Analysis of Hot Carrier Degradation for 0.25 µm Process LDD nMOSFETs with Nitride Spacer and Sidewall Buffer Oxide
指導教授: 龔正
Jeng Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 72
中文關鍵詞: 熱載子效應氮間隙壁緩衝氧化層低摻雜汲極
外文關鍵詞: Hot Carrier effect, Nitride Spacer, Sidewall Buffer Oxide, LDD
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討具有ONO間隙壁結構之0.25微米製程金氧半電晶體其熱載子效應特性。間隙壁緩衝氧化層厚度對於熱載子可靠度有顯著之影響力,我們發現多段式的熱載子衰退特性僅發生在加速老化條件為最大基底電流 (Vg Vd /2) 下,且使用較薄的緩衝氧化層NOLDD元件(100 Å)時。當測試元件之加速老化條件為最大基底電流 (Isubmax condition, Vg Vd /2),在第一階段衰退(1ms~100s)呈現類似在高閘極電壓加速老化條件下(High-Vg-stressing-condition-like)的衰退特性,在此測試條件下產生之ONO間隙壁內補陷熱電子效應將不可再被忽略,且為第一階段元件衰退的主因。在第二階段 (100s之後),其衰退特性與第一階段相較下呈現出較迅速的斜率,這是由於界面狀態 (interface states) 的產生。這現象指出,當元件間隙壁下之緩衝氧化層較薄時,熱電子補陷機制首先主宰元件第一階段的衰退,而後界面狀態開始產生且將與補陷熱電子機制相互競爭來主導元件第二階段的衰退。採用固定基底電流加速老化的實驗證實了靠近汲極端,其吸引熱電洞的垂直電場是產生界面狀態的主要原因。另外,具有不同緩衝氧化層厚度元件 (100 Å、150 Å) 的生命期 (Life-time) 也被評估之。
    當熱電子被捕陷在ONO間隙壁內,用最大轉導外插法 (gm-maximum extrapolation technique) 之萃取數值用來分析元件的臨限電壓Vt衰退特性被證實為一不恰當的方式。大量的間隙壁熱電子補陷將導致汲極串聯電阻增加,這將使得元件轉導降低以及峰值轉導所對應的閘極電壓減小,此時最大轉導外插法所萃取之臨限電壓將變得更小且可能被誤判為電洞補陷效應。我們考慮串聯電阻效應對於最大轉導外插法所造成的影響來探討外插閘極電壓Vgsi 與汲極串聯電阻增量 的關係,最後推導出一個粹取的演算法並證明真正的元件臨限電壓在第一階段的熱載子加速老化過程中將維持不變


    The hot carrier degradation of 0.25µm process LDD n-MOSFETs with nitride spacer and sidewall buffer oxide (NOLDD) is characterized in detail. We find that the sidewall buffer oxide thickness intensely affects hot carrier reliability. A mechanism of multi-stage hot carrier degradation (linear gm degradation) is observed and only occurs in NOLDD device with thinner sidewall buffer oxide (100Å) under maximum substrate current Isubmax stressing condition, (Vg Vd /2). In the early stage (1ms~100s), the device degradation for Isubmax stressing condition performs “high-Vg-stressing-condition-like” (Vg=Vd) characteristic due to nitride spacer trapped electrons, which cannot be ignored any more and is mostly responsible for device degradation. After 100s, the second stage degradation performs more rapid power law gradient due to interface states generation compared with early stage. It implies that the electrons trapping mechanism predominates the early stage degradation, and then interface states generation competes against electrons trapping mechanism to dominate the second stage gm degradation while the sidewall buffer oxide is thinner. An examination of constant substrate current stressing suggests that the vertical electric field attracting hot hole near the drain edge is the main cause of interface states generation. Lifetime evaluation for devices with different buffer oxide thickness of 100Å and 150 Å is also carried out for comparison.
    While electrons are trapped in nitride spacer, the threshold voltage Vt extraction using gm-maximum exploration method in early stage hot carrier stress is proved to be an un-proper method to characterize device. Once a large amount of electrons trapped in nitride spacer, the drain series resistance increases, which transforms to reduce both transconductance gm and the corresponding gate-to-source voltage Vgs at which peak gm occurs. The threshold voltage Vt extracted with gm-maximum extrapolation method under this circumstance will become smaller and might be misjudged as trapped hole during the period of hot carrier stress. We consider the effect of series resistance on gm-maximum extrapolation method to find a relationship between the increased drain resistance and the decreased intercept gate voltage Vgsi. An extraction algorithm is derived, which establishes that the true threshold voltage of device remains unchanged under test during the early stage hot carrier stress.

    Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1 Introduction 5 2.2 Brief of Hot Carrier Damage Mechanism 5 2.2.1 Mechanism of Oxide Trapping 6 2.2.2 Models of Interface States Creation 8 2.3 Self-Limiting Behavior of Hot Carrier Degradation 9 2.3.1 Analytical Model 10 2.3.2 Two-Stage Degradation of Oxide Spacer MOSFETs 12 2.4 Nitride LDD Spacer with Sidewall Buffer Oxide MOSFETs 14 2.4.1 Simple Degradation Model 14 2.4.2 Performance and Reliability Evaluation 16 Chapter 3. Characterization of Hot Carrier Degradation for NOLDD nMOSFETs 17 3.1 Introduction 18 3.2 Experimental Details 19 3.2.1 Sample Preparation 19 3.2.2 Stress Conditions and Measurements 20 3.3 Results and Discussion 22 3.3.1 Multi-stage Hot Carrier Degradation 23 3.3.2 Suppression of Hot Electrons Injection 30 3.3.3 Interface States Generation 34 3.3.4 Life-time Evaluation 41 3.4 Summary 47 Chapter 4. Threshold Voltage Extraction in Early stage hot carrier Degradation 48 4.1 Introduction 49 4.2 Nitride Trapped Charge Effect on Threshold Voltage Extraction 51 4.2.1 Limitation of gm-maximum Extrapolation Method 51 4.2.2 Modified Method of Threshold Voltage Extraction 56 4.3 Results and Discussion 65 4.3.1 Real Behavior of Threshold Voltage Variation 65 4.3.2 Constant Threshold Current Method 65 4.4 Summary 67 Chapter 5. Conclusion 68

    [1]T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, M. Bohr, “Scaling Challenges and Device Design Planar CMOS Transistors”, VLSI Technology. Digest of Technical Papers. 2000 Symposium, pp. 174 –175.
    [2]T. Hori, K. Kurimoto, T. Yabu, and G. Fuse, “ A new submicron MOSFET with LATID (large-tilt-angle implanted drain) structure”, VLSI Technology. Digest of Technical Papers. 1988 Symposium, pp.15
    [3]A. Bryant et al., “ Angled implant fully overlapped LDD (Al-FOLD) NFETs for performance and reliability”, Reliability Physics Symposium. 27th Annual Proceedings, International, pp. 152 –157, 1989.
    [4]M. Inuishiet et al., “Optimum Desing of Gate/ N- overlapped LDD Transistor”, LSI Technology. Digest of Technical Papers. 1989 Symposium, pp.15
    [5]T. Mizuno, S. Sawada, Y. Saitoh, and T. Tanaka, “ Gate-Fringing Field Effects on High Performance in High Dielectric LDD Spacer MOSFET’s” IEEE Trans. Electron Devices, vol. ED-39, pp. 982-988, 1992.
    [6]T. Mizuno, S. Sawada, Y. Saitoh, and T. Tanaka, “Si3N4/SiO2 Spacer Induced High Reliability in LDDMOSFET and Its Simple Degradation Model”, IEDM Tech. Dig., pp. 234-237, 1988.
    [7]T. Mizuno, S. Sawada, Y. Saitoh, and T. Tanaka, “ Hot Carrier Injection Suppression Due to the Nitride–Oxide LDD spacer structure,” IEEE Trans. Electron Devices, vol. ED-38, pp. 584-591, 1991.
    [8]Jyh-Chyurn Guo, Chih-Yuan Lu, Charles Ching-Hsiang Hsu, Pole-Shang Lin and Steve Shao-Shiun Chung, “Performance and Reliability Evaluation of High Dielectric LDD Spacer on Deep Sub-Micrometer LDD MOSFET”, IEEE Trans. Electron Devices, vol. ED-41, pp. 1239-1247, 1994.
    [9]D. S. Ang, C. H. Ling, “A Unified Model for the Self-Limiting Hot-Carrier Degradation in LDD n-MOSFETs”, IEEE Trans. Electron Devices, Vol. ED-45, pp. 149 –159, 1998.
    [10]Chunlin Liang, Henry Caw, and Peng Cheng, “An Analytical Model for Self-Limiting Behavior of Hot-Carrier Degradation in 0.25µm n-MOSEET’s”, IEEE Electron Device Letters, Vol. EDL-13, pp. 569-571, 1992.
    [11]Vei-Han Chan, James E. Chung, “Two-Stage Hot-Carrier Degradation and Its Impact on Submicrometer LDD NMOSFET Lifetime Prediction”, IEEE Trans. Electron Devices, Vol. ED-42, pp. 957 –962, 1995.
    [12]A. Raychaudhuri, M.J. Deen, W. S. Kwan, and M. I. H. King, “A Simple Method to Qualify the LDD Structure Against Early Mode of Hot-Carrier Degradation” IEEE Trans. Electron Devices, Vol. ED-43, pp. 110 –115, 1996.
    [13]A. Raychaudhuri, M.J. Deen, W. S. Kwan, and M. I. H. King, “Features and Mechanisms of the Saturating Hot Carrier Degradation in LDD NMOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1114-1122, 1996.
    [14]G. G. Oh, W. K. Chim, D. S. H. Chan, C.L. Lou, “ Series Resistnace and Effective Channel Mobility Degradation In LDD NMOSFETs Under Hot-Carrier Stressing”, Physical and Failure Analyusis of Integrated Circuits, 1999. Proceedings of the 1999 7th International Symposium, pp. 99 –103, 1999.
    [15]B. Doyle, M. Bourcerie, J.C. Marchetaux, A. Boudou, “ Interface State Creation and Charge Trapping in the Medium-to High gate voltage range (Vd/2 ≧Vg ≧ Vd) During Hot-Carrier Stressing of n-MOS Transistors”, IEEE Trans. Electron Devices, Vol. ED-37, pp. 744-754, 1990.
    [16]W. Weber, M. Brox, R. Thewes, and Nelson S. Saks, “ Hot Hole Induced Negative Oxide Charges in n-MOSFETs”, IEEE Trans. Electron Devices, Vol. ED-42, pp. 1473-1480, 1995.
    [17]Stanley Wolf, Silicon processing for the VLSI Era Volume 3: The Submicron MOSFET, Lattice Press, 1995.
    [18]Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, UK.:Cambridge Univ. Press, 1998.
    [19]Chenming Hu, Simon C. Tam, Fu-Chieh Hsu, Ping Keung Ko, Tung-Yi Chan, and Kyle W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”, IEEE Trans. Electron Devices, vol. ED-32, pp.375-385, 1990.
    [20]C. Y. Chang and S. M. Sze, ULSI Devices, John Wiley & Sons, Inc.
    [21]T. Tsuchiya, “ Trapped-Electron and Generated Interface-Trap Effects in Hot–Electron-Induced MOSFET Degradation,” IEEE Trans. Electron Devices, Vol. ED-34, pp. 2291,1987.
    [22]W.Weber, M.Brox, R.Thewes and N.S. Saks, “Hot-Hole-Induced Negative Oxide Charges in n-MOSFET’s.” IEEE Trans. Electron Devices, Vol. ED-42, pp. 1473-1479, 1995.
    [23]M. Bourcerie, B.S.Doyle, J-C, Marchetaux,J.C.Soret, and A.Boudou,” Relaxable Damage in Hot-Carrier Stressing of n-MOS Transistors-Oxide Traps in the Near Interfacial Region of the Gate Oxide,” IEEE Trans. Electron Devices, vol. ED-37, pp.708-717,1990.
    [24]B.Doyle, M. Bourcerie, C. Bergonzoni, R. Benecchi, A.Bravis, K.R. Mistry, and A.Boudou, “The Generation and Characterization of Electron and Hole Traps Created by Hole Injection During Low Gate Voltage Hot-Carrier Stressing of n-MOS Transistors,” IEEE Trans. Electron Devices, vol. ED-37, pp.1869-1876, 1990.
    [25]Y. Taur, "MOSFET Channel Length: Extraction and Interpretation", IEEE Trans. Electron Devices, vol. ED-47, pp. 160-170, 2000.
    [26]J. G. J. Ghern, P. Chang, R.F. Motta, and N. Godinho, “ A New Method to Determine MOSFET Channel Length”, IEEE Trans. Electron Devices, vol. EDl-1, pp. 170, 1980.
    [27]G. J. Hu, C. Chang, and Y. T. Chia, “Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFETs, IEEE Trans. Electron Devices, vol. ED-34, pp. 2469, 1987.
    [28]Yan, Z.X.; Deen, M.J. “Physically-Based Method for Measuring the Threshold Voltage of MOSFETs”, Circuits, Devices and Systems, IEE Proceedings G, Vol. 138, NO.3, pp. 351-357, 1991.
    [29]TROUTMAN, R.R. and FORTINO, A.G., “Simple Model for Threshold Voltage in a Short-Channel IGFET”, IEEE Trans. Electron Devices, vol. ED-24, pp. 1266-1268, 1977.
    [30]WU. Y. and HSU, K.C., “A New Threshold-Voltage Method for Small-Geometry Buried-Channel MOSFETs, Solid-State Electron, vol. 28, pp. 1283-1289, 1985.
    [31]Jao-Hsian Shiue, Joseph Ya-min Lee, and Tien-Sheng Chao, “ A Study of Interface Trap Generation by Fowler-Nordheim and Substrate-Hot Carreir Stresses for 4-nm Thick Gate Oxides”, IEEE Trans. Electron Devices, Vol. ED-46, pp. 1705 –1710, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE