簡易檢索 / 詳目顯示

研究生: 江采玲
Chiang, Tsai-Ling
論文名稱: 鈦酸鋇陶瓷粉末/多壁奈米碳管/紙纖維製備可撓性複合材料之介電性質研究
Dielectric properties of flexible composites made from barium titanate ceramic powder, multi-walled carbon nanotubes and paper fibers
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 陳仁君
謝育民
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 121
中文關鍵詞: 介電材料鈦酸鋇多壁奈米碳管
外文關鍵詞: dielectric materials, barium titanate, multi-walled carbon nanotubes
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鋇(Barium titanate,BaTiO3)是一種具有優異的介電性質的介電材料,其相對介電常數非常高,通常在1000左右,代表在給定的電場下,可以儲存大量電荷;此外鈦酸鋇的介電損耗非常低,通常在0.01以下,可長時間儲存電荷而不會導致能量損失。多壁奈米碳管(Multi-walled carbon nanotubes,MWCNTs)具有高長寬比,使複合材料滲透閾值(percolation threshold)較傳統球型填充料複合材低,在更低的濃度就形成導通網絡,而其介電常數通常在10-100之間,比單壁奈米碳管更高,使其在電容器及介電填充材料等方面具有應用前景。
    本研究嘗試以對環境友善、生物可降解且可任意改變形狀之紙纖維作為基材,添加不同濃度之鈦酸鋇陶瓷粉末以及多壁奈米碳管,找出介電性質最佳之鈦酸鋇陶瓷粉末/奈米碳管/紙纖維複合材料比例。以純紙纖維樣品作為控制組,實驗組分別有20wt%、40wt%、60wt%、80wt%,接著在樣品中添加微量奈米碳管、調整奈米碳管之濃度,最後進一步將鈦酸鋇粉末替換成摻雜鋯之鈦酸鋇粉末,製備出不同參數的樣品,以掃描電子顯微鏡(SEM)觀察其表面形貌;以X光繞射儀(XRD)分析其晶體結構;以四點量測法分析其電阻率;以電性分析儀(LCR meter)分析其電容量、介電常數、介電損耗;以雷射閃光法分析其熱擴散係數;最後進行樣品之串、並聯測試。


    Barium titanate (BaTiO3) is an excellent dielectric material with relative dielectric constant approaching 1000 under a given electric field. Additionally, BaTiO3 has a very low dielectric loss (< 0.01) which allows charges to be stored for a long period of time with a minor loss of energy. Multi-walled carbon nanotubes (MWCNTs) have a high aspect ratio, which lowers percolation threshold in composites compared to traditional spherical fillers made systems. The dielectric constant of MWCNTs is lies on 10-100; value which is higher than that of single-walled carbon nanotubes (SWCNTs), making them promising for applications in capacitors and dielectric fillers.
    This study uses paper fibers, BaTiO3 powders and MWCNTs to make biodegradable composites with optimal dielectric properties and flexibility; paper fibers are used as substrate because of eco-friendly nature and flexibility. Papers are loaded with different amounts of BaTiO3 powders and MWCNTs. The BaTiO3 powder is replaced with zirconium-doped barium titanate (Zr-BaTiO3) powder. Samples with different parameters are prepared. The surface morphology is observed by scanning electron microscopy (SEM), and the crystal structure is analyzed by X-ray diffraction (XRD). The electrical resistivity is measured by Van der Pauw method. The capacitance, dielectric constant, and dielectric loss of samples are analyzed using LCR meter to investigate the dielectric properties of different samples. The thermal diffusivity is measured by Laser Flash Apparatus.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XV 第一章 前言與實驗動機 1 第二章 理論說明與文獻回顧 2 2-1 介電材料簡介 2 2-1-1 有機介電材料 4 2-1-2 無機介電材料 5 2-2 介電材料儲電原理 6 2-2-1 介電常數 6 2-2-2 介電損耗 7 2-2-3 介電材料儲能原理 9 2-3 介電陶瓷-鈣鈦礦結構材料 11 2-3-1 鈣鈦礦結構 11 2-3-2 鈦酸鋇 13 2-3-3 鋯摻雜鈦酸鋇 16 2-4 奈米碳管 17 2-4-1 奈米碳管結構 18 2-4-2 奈米碳管導電性質 20 2-4-3 複合材料中奈米碳管的導電性質與介電性質 23 2-4-4 奈米碳管導熱性質 25 第三章 研究方法 26 3-1 實驗藥品與器材 26 3-2 實驗流程圖 29 3-2-1 BaTiO3、Zr-BaTiO3陶瓷粉末製備方法 29 3-2-2 BaTiO3 (Zr-BaTiO3) /多壁奈米碳管/紙纖維複合材料製備方法 30 3-3 實驗步驟 31 3-3-1 BaTiO3、Zr-BaTiO3陶瓷粉末製備方法 31 3-3-2 BaTiO3 (Zr-BaTiO3) /多壁奈米碳管/紙纖維複合材料製備方法 32 3-4 量測與分析 33 3-4-1 掃描式電子顯微鏡與能量分散光譜儀 33 3-4-2 X光繞射分析 34 3-4-3 四點探針電阻率量測 35 3-4-4 LCR電性分析儀 37 3-4-5 雷射閃光法熱擴散係數分析 38 第四章 實驗結果與討論 40 4-1 陶瓷粉末形貌、成分與晶體分析 40 4-1-1 樣品外觀 40 4-1-2 SEM微結構分析 40 4-1-3 EDS成分分析 43 4-1-4 XRD晶體分析 45 4-2 複合材料形貌與晶體分析 46 4-2-1 樣品外觀 46 4-2-2 SEM微結構分析 47 4-2-3 EDS成分分析 61 4-2-4 XRD晶體分析 76 4-3 複合材料電阻率分析 82 4-3-1 複合材料樣品之電阻率 82 4-3-2不同鈦酸鋇陶瓷粉末添加濃度樣品之滲流閾值差異 83 4-4 複合材料介電性質分析 86 4-4-1 添加不同比例陶瓷粉末之影響 87 4-4-1-1 介電常數 87 4-4-1-2 介電損耗 90 4-4-2 添加不同比例奈米碳管之影響 92 4-4-2-1 40wt%鈦酸鋇陶瓷粉末 92 4-4-2-2 60wt%鈦酸鋇陶瓷粉末 96 4-4-2-3 80wt%鈦酸鋇陶瓷粉末 99 4-4-3 鈦酸鋇摻雜鋯之影響 102 4-5 雷射閃光法熱擴散係數分析 106 4-6 串並聯電容器 112 4-6-1 串聯電容器 112 4-6-2 並聯電容器 113 第五章 結論 115 參考文獻 116

    1. Riskin, J., Poor Richard's Leyden Jar: Electricity and Economy in Franklinist France. Historical studies in the physical and biological sciences, 1998. 28(2): p. 301-336.
    2. Okwundu, O.S., C.O. Ugwuoke, and A.C. Okaro, Recent trends in non-faradaic supercapacitor electrode materials. Metallurgical and Materials Engineering, 2019. 25(2): p. 105-138.
    3. Ho, J., T.R. Jow, and S. Boggs, Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 2010. 26(1): p. 20-25.
    4. Sakabe, Y., Multilayer ceramic capacitors. Current Opinion in Solid State and Materials Science, 1997. 2(5): p. 584-587.
    5. McLean, D. and H. Wehe, Miniature lacquer film capacitors. Proceedings of the IRE, 1954. 42(12): p. 1799-1805.
    6. Dineva, P., et al., Piezoelectric materials. 2014: Springer.
    7. Sebastian, M.T. and H. Jantunen, Low loss dielectric materials for LTCC applications: a review. International Materials Reviews, 2008. 53(2): p. 57-90.
    8. Scaife, B.K., Principles of dielectrics. 1989.
    9. Chen, L.-F., et al., Microwave electronics: measurement and materials characterization. 2004: John Wiley & Sons.
    10. Hao, X., A review on the dielectric materials for high energy-storage application. Journal of Advanced Dielectrics, 2013. 3(01): p. 1330001.
    11. Walter Jr, T., Introduction to electrodynamics and radiation. Vol. 34. 2012: Elsevier.
    12. Vijatović, M., J. Bobić, and B.D. Stojanović, History and challenges of barium titanate: Part I. Science of Sintering, 2008. 40(2): p. 155-165.
    13. Chen, Y., et al., Large-area perovskite solar cells–a review of recent progress and issues. RSC advances, 2018. 8(19): p. 10489-10508.
    14. Katz, E.A., Perovskite: name puzzle and German‐Russian odyssey of discovery. Helvetica Chimica Acta, 2020. 103(6): p. e2000061.
    15. Goldschmidt, V.M., Die gesetze der krystallochemie. Naturwissenschaften, 1926. 14(21): p. 477-485.
    16. Megaw, H.D., Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Crystallographica, 1952. 5(6): p. 739-749.
    17. Ono, L.K., E.J. Juarez-Perez, and Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions. ACS applied materials & interfaces, 2017. 9(36): p. 30197-30246.
    18. Yoon, D., Tetragonality of barium titanate powder for a ceramic capacitor application. Journal of Ceramic Processing Research, 2006. 7(4): p. 343.
    19. 杨敏铮, 江建勇, and 沈洋, 高能量密度介电储能材料研究进展. 硅酸盐学报, 2021. 49(7): p. 1249-1262.
    20. Vijatović, M., J. Bobić, and B.D. Stojanović, History and challenges of barium titanate: Part II. Science of Sintering, 2008. 40(3): p. 235-244.
    21. AL-Kattan, S., Preparation and Physical Properties of Barium Titanate with Some Added Oxides. University of Technology, Iraq, 2018.
    22. Arrott, A.S., Generalized curie-weiss law. Physical Review B, 1985. 31(5): p. 2851.
    23. Kowalski, K., et al., Electrical properties of Nb-doped BaTiO3. Journal of Physics and Chemistry of Solids, 2001. 62(3): p. 543-551.
    24. Yu, Z., R. Guo, and A. Bhalla, Dielectric behavior of Ba (Ti1− x Zrx) O3 single crystals. Journal of Applied Physics, 2000. 88(1): p. 410-415.
    25. Aghayan, M., et al., Sol–gel combustion synthesis of Zr-doped BaTiO3 nanopowders and ceramics: Dielectric and ferroelectric studies. Ceramics International, 2014. 40(10): p. 16141-16146.
    26. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
    27. Mildred S. Dresselhaus (Editor), Gene Dresselhaus (Editor), Phaedon Avouris (Editor), R.E. Smalley (Foreword), Carbon nanotubes: synthesis, structure, properties, and applications. 2001.
    28. Vidu, R., et al., Nanostructures: a platform for brain repair and augmentation. Frontiers in systems neuroscience, 2014. 8: Article 91.
    29. Mintmire, J. and C. White, Universal density of states for carbon nanotubes. Physical Review Letters, 1998. 81(12): p. 2506.
    30. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
    31. Wallace, P.R., The band theory of graphite. Physical review, 1947. 71(9): p. 622.
    32. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules. Physical review letters, 1992. 68(10): p. 1579.
    33. Boudenne, A., et al., Electrical and thermal behavior of polypropylene filled with copper particles. Composites Part A: Applied Science and Manufacturing, 2005. 36(11): p. 1545-1554.
    34. Wen, M., et al., The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer, 2012. 53(7): p. 1602-1610.
    35. Martínez, M.C., S.H. López, and E.V. Santiago, Relationship between polymer dielectric constant and percolation threshold in conductive poly (styrene)-type polymer and carbon black composites. Journal of Nanomaterials, 2015. 2015: p. 7-7.
    36. Nan, C.-W., Physics of inhomogeneous inorganic materials. Progress in materials science, 1993. 37(1): p. 1-116.
    37. Hone, J., Phonons and thermal properties of carbon nanotubes, in Carbon nanotubes: synthesis, structure, properties, and applications. 2001, Springer. p. 273-286.
    38. Pop, E., et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano letters, 2006. 6(1): p. 96-100.
    39. Elton, L. and D.F. Jackson, X-ray diffraction and the Bragg law. American Journal of Physics, 1966. 34(11): p. 1036-1038.
    40. Rietveld, G., et al., DC conductivity measurements in the Van Der Pauw geometry. IEEE transactions on instrumentation and measurement, 2003. 52(2): p. 449-453.
    41. Lim, K.-H., S.-K. Kim, and M.-K. Chung, Improvement of the thermal diffusivity measurement of thin samples by the flash method. Thermochimica Acta, 2009. 494(1-2): p. 71-79.
    42. Mahajan, S., et al., Effect of Zr on dielectric, ferroelectric and impedance properties of BaTiO 3 ceramic. Bulletin of Materials Science, 2011. 34: p. 1483-1489.
    43. Xu, Q. and Z. Li, Dielectric and ferroelectric behaviour of Zr-doped BaTiO3 perovskites. Processing and Application of Ceramics, 2020. 14(3): p. 188-194.
    44. Singh, M., et al., Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and actuators b: chemical, 2017. 241: p. 1170-1178.
    45. Wan Ishak, W.H., et al., Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials, 2018. 8(10): p. 749.
    46. Dasari, M., et al., Calligraphic solar cells: acknowledging paper and pencil. Journal of Materials Research, 2016. 31(17): p. 2578-2589.
    47. Ridha, N.J., et al., Effect of Sr Substitution on Structure and Thermal Diffusivity of Ba1-xSrxT iO3 Ceramic. American J. of Engineering and Applied Sciences, 2009. 2(4): p. 661-664.

    QR CODE