研究生: |
羅晧均 Luo, Haw-Jiun. |
---|---|
論文名稱: |
多層次物種多樣性分解測度:統計估計與軟體開發 Hierarchical Decomposition of Species Diversity Measures:Statistical Estimation and Software Development |
指導教授: |
趙蓮菊
Chao, Lien-Ju |
口試委員: |
邱春火
Chiu, Chun-Huo 謝淑蓉 Shieh, Shwu-Rong 江智民 Chiang, Jyh-Min |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 216 |
中文關鍵詞: | 多層次架構分解 、生物多樣性指標 、相異性指標 |
外文關鍵詞: | Hierarchical decomposition, Biodiversity index, Dissimilarity indices |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物多樣性在不論是生態學、遺傳學與其他相關學科上都是個關鍵且重要的概念。實際上,生物多樣性的概念橫跨了所有生態系中生物體的變異性,其中包含了從基因、個體、物種、族群、群集、生態系到地景等各種層次的生命型式,因此本質上就是一個多層次的結構,且現今因資料蒐集技術的進步,大多數生態資料會在多層次結構中的不同層次中蒐集,例如一個簡單的三層次結構就是一個整體區域下包含了多個子區域,而每個子區域下又包含了多個群落。因此整合多個層次與多個子區域之間的結構關係來衡量多樣性的方法便顯得更為重要。
本文基於Tsallis (1988) 熵指標族與Hill (1973) 指標族並分別使用加法與乘法分解的概念,以個體數為權重來建立多層次的物種alpha、beta與gamma多樣性,適用在兩種資料形態下:個體抽樣下豐富度資料與區塊抽樣下的出現與否資料,並且定義標準化的相異性指標,以便衡量子區域間或群落間的差異程度。當中利用統計方法估計多層次分解下多樣性指標與相異性指標、以拔靴法估計指標標準差。透過電腦模擬,比較本文推廣估計量與最大概似估計量的優劣,結果顯示本文推廣的估計量不論是在平均偏誤、方均根誤差皆有較佳的表現。接著將本文推廣的架構各以一筆實際資料進行分析並作為實際應用上的範例。最後,透過R語言將本文提及的內容編寫成簡易的互動式網頁,方便無程式背景的使用者分析並擷取分析結果。
Biological diversity (biodiversity) is an essential concept and plays an important role in ecology, genetics and many other disciplines. Biodiversity generally refers to the variety and variability of life at the levels of genes, individuals, species, populations, communities, landscapes, etc, and therefore is inherently under a hierarchical structure. Nowadays, because of rapid advancement of technology, collecting data becomes more convenient and faster, most biological data are typically collected at various levels of multiple-level hierarchical structures, e.g., a simplest 3-level hierarchical structure is that an region includes several subregions and each subregion includes several communities. A unifying framework for the measurement of biodiversity across hierarchical levels is thus required.
Based on two measures (Tsallis entropy and Hill number) and two types of decompositions (additive and multiplicative), this thesis presents a framework for the measurement of species alpha, beta and gamma entropies/diversities across hierarchical levels for both abundance data under individual sampling and incidence data under quadrat sampling. Standardized dissimilarity measures are also derived to quantify differences among multiple regions or communities. Statistical method is developed to estimate the hierarchical entropies/diversities and dissimilarity measures with estimated bootstrap variances. Simulation results are used to show that the proposed estimators outperform the maximum likelihood estimators in terms of bias and root mean squared error (RMSE). The unifying framework is applied to real data sets to illustrate the proposed estimators and interpret the numerical results.
Furthermore, an online application for computing the proposed measures and estimators is developed using R language and Shiny package.
[1] Chao, A., & Shen, T. J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10(4), 429-443.
[2] Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
[3] Chao, A., Chiu, C. H., & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology, 93(9), 2037-2051.
[4] Chao, A., & Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882.
[5] Chao, A., Wang, Y. T., & Jost, L. (2013). Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution, 4(11), 1091-1100.
[6] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 265-270.
[7] Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 783-791.
[8] Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015). Unveiling the species‐rank abundance distribution by generalizing the Good‐Turing sample coverage theory. Ecology, 96(5), 1189-1201.
[9] Chiu, C. H., Jost, L., & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84(1), 21-44.
[10] Chiu, C. H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good–turing frequency formula. Biometrics, 70(3), 671-682.
[11] Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, 114(30), E6089-E6096.
[12] Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162(6), 734-743.
[13] Crist, T. O., & Veech, J. A. (2006). Additive partitioning of rarefaction curves and species–area relationships: unifying α‐, β‐and γ‐diversity with sample size and habitat area. Ecology Letters, 9(8), 923-932.
[14] Dray, S., Dufour, A. B., & Chessel, D. (2007). The ade4 package-II: Two-table and K-table methods. R News, 7(2), 47-52.
[15] Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7, 1-26.
[16] Gotelli, N. J., Chao, A., Colwell, R. K., Hwang, W. H., & Graves, G. R. (2012). Specimen‐Based Modeling, Stopping Rules, and the Extinction of the Ivory‐Billed Woodpecker. Conservation Biology, 26(1), 47-56.
[17] Gaggiotti, O. E., Chao, A., Peres‐Neto, P., Chiu, C. H., Edwards, C., Fortin, M. J., ... & Selkoe, K. A. (2018). Diversity from genes to ecosystems: A unifying framework to study variation across biological metrics and scales. Evolutionary Applications. DOI: 10.1111/eva.12593
[18] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432.
[19] Horn, H. S. (1966). Measurement of" overlap" in comparative ecological studies. The American Naturalist, 100(914), 419-424.
[20] Ivol, J. M., Guinand, B., Richoux, P., & Tachet, H. (1997). Longitudinal changes in Trichoptera and Coleoptera assemblages and environmental conditions in the Loire River (France). Archiv für Hydrobiologie, 138(4), 525-557.
[21] Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375.
[22] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427-2439.
[23] Marshall, A. W., Olkin, I., & Arnold, B. C. (1979). Inequalities: theory of majorization and its applications. New York.
[24] MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40(4), 510-533.
[25] Medellín, R. A., Equihua, M., & Amin, M. A. (2000). Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14(6), 1666-1675.
[26] Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University. Series E, 3(1), 65-80.
[27] Patil, G. P., & Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association, 77(379), 548-561.
[28] Pavoine, S., & Dolédec, S. (2005). The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environmental and Ecological Statistics, 12(2), 125-138.
[29] Pavoine, S., & Ricotta, C. (2014). Functional and phylogenetic similarity among communities. Methods in Ecology and Evolution, 5(7), 666-675.
[30] Pavoine, S., Marcon, E., & Ricotta, C. (2016). ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Methods in Ecology and Evolution, 7(10), 1152-1163.
[31] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21(1), 24-43.
[32] Ricotta, C. (2005). On hierarchical diversity decomposition. Journal of Vegetation Science, 16(2), 223-226.
[33] Routledge, R. D. (1979). Diversity indices: Which ones are admissible? Journal of Theoretical Biology, 76(4), 503-515.
[34] Ripple, W. J., Wolf, C., Newsome, T. M., Galetti, M., Alamgir, M., Crist, E., ... & 15,364 scientist signatories from 184 countries. (2017). World Scientists’ Warning to Humanity: A Second Notice. BioScience, 67(12), 1026-1028.
[35] Shannon, C. E., & Weaver, W. (1949). A Mathematical Model of Communication Urbana. )(IL: University of Illinois Press, 1949).
[36] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688.
[37] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487.
[38] Tong, Y. L. (1983). Some distribution properties of the sample species-diversity indices and their applications. Biometrics, 39(4), 999-1008.
[39] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2) 213-251.
[40] Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279-338.
[41] Wagner, H. H., Wildi, O., & Ewald, K. C. (2000). Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology, 15(3), 219-227.
[42] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51(1), 8-53.
[43] 林尚毅 (2011). 生物多樣性指標之多層次架構與時空架構分解 趙蓮菊指導 新竹市國立清華大學統計學研究所博士論文
[44] 曾凱聲 (2014). 區塊抽樣之Hill指標估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[45] 林政翰 (2017). 多層次生物多樣性指標分解:統計估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文