簡易檢索 / 詳目顯示

研究生: 李英碩
Ying-Shuo Lee
論文名稱: 客服中心人員排班問題之整數規劃
Mix-integer Programming for Call Center Agent Shift Scheduling Problem
指導教授: 洪一峯
Yi-Feng Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 客服中心人員排班多技能
外文關鍵詞: call center, agent shift scheduling, multiple skill agent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人力成本不斷提升,尤其客服中心的人事成本佔了總營運成本的百分之七十,因此客服中心的人員排班問題越來越為重要。
    本研究提出兩個混整數數學規劃模型求解二十四小時營運之客服中心的長期排班問題,這兩個數學規劃可以求得問題規劃期間最佳的人員班別指派,數學規劃中所考慮的法規限制比起過去以最佳化求解排班問題的研究,本研究所考慮的限制條件較完整。
    過去求解人員排班問題或是客服中心之人員排班問題的文獻,所考慮的範圍大多都是在預測每個時間區段的人力需求數量以及每個班別應該安排的人數,只有少數的文獻有考慮人員的指派。過去考慮人員指派的文獻,大都是以啟發式演算法求解,非以最佳化演算法的方式處理問題。而且大部份之文獻都是分開來以兩個階段分別求解,一個求解每個班別應安排的人數,另一個將班別分配給特定的人員。分兩階段求解的缺點是可能找到的解和最佳解差距很大。為了避免分兩個階段求解,本研究用單一個數學規劃最佳化模式直接決定人員被分配的班別。
    整數規劃的求解速度主要是受限於整數變數個數的影響,本研究提出一些新的數學規劃模式建制的技術,以減少整數變數的個數,並利用該建制的技術在本研究的數學模式二。期望數學模式二擁有比數學模式一更好的求解效率。
    實驗驗證後,發現雖然數學模式二的整數變數個數比數學模式一少,但在固定求解時間下,數學模式一的解明顯比數學模式二好。
    關鍵字:客服中心、人員排班、多技能


    The personnel cost has been increasing in recent years. Especially, for a call center, the personnel cost has accounted for 70% of total operation cost. Therefore, recently, call center agent shift scheduling has become an important problem.
    This study proposes two mixed integer programming formulation to solve the long-term agent shift scheduling problem for a 24-hours call center. This formulation will find the optimal agent shift schedule. We consider more thoroughly on the government regulation in our formulation than previous literatures.
    Most of previous studies in this subject deal with the demand forecast and shift man power allocation problem by determining the number of people is needed for a particular shift. Only a few studies considers personnel shift schedule problem and most of them use heuristic method to solve the problem; furthermore, they use two separated steps to solve the problem. The first one is to find the man power requirement for each time period. The second one calculates the detailed shift assignment for each individual agent. The potential shortcoming of using two separated steps to solve the problem is the gap between the obtained solution and the optimal solution might be too large. The study proposes a mixed integer program formulation that can be solved in one step; thus, avoid the shortcoming of the two-step approaches.
    Since the number of integer variable is the major determinant for the computation time of a mixed integer program, this study proposes a number of new modeling techniques that help reducing the number of integer variables, and use the modeling techniques in second mixed integer program in this study.
    Although the number of integer variables of the second mixed integer program is less than that of first mixed integer program, the first mixed integer program has better solutions than the second mixed integer program when the solution time is fixed.

    Keywords: call center, agent shift scheduling, multiple skill agent

    目錄 第一章 緒論 1 1.1.研究背景 1 1.1.1.客服中心的系統發展 1 1.1.2.客服中心的功能與應用 3 1.1.3.客服中心的系統架構 3 1.1.4.客服中心的人員排班問題 5 1.2.研究動機 7 1.3.研究目的與範圍 7 1.4.專有名詞解釋 8 1.5.研究流程與架構 9 第二章 文獻回顧 10 2.1.人員排班的問題類型 10 2.2.人員排班問題的回顧 16 2.2.1.人員排班問題的模式化 17 2.2.2.人員排班求解的方法 20 2.3.客服中心人員排班文獻回顧 23 第三章 客服中心人員排班之模式建構 26 3.1.問題的描述與定義以及改進 26 3.1.1.名詞解釋 26 3.1.2.問題的描述與問題的假設 26 3.1.3.研究的改進 28 3.2符號清單 28 3.3.變數的簡介 31 3.3.1.跨天上班時間的考量 31 3.3.2.彈性的休息時間的考量 32 3.3.3.加班 39 3.4.限制條件的分類 42 3.5.數學模式一介紹 43 3.6.數學模式二介紹 46 3.7.問題大小的計算公式 50 3.5.1.變數個數的計算 51 3.5.2.限制式數量的計算 52 第四章 實驗設計 53 4.1.問題參數設定以及數據產生 53 4.1.1.參數設定 53 4.1.2.數據產生 56 4.2.問題求解與分析 58 第五章 結論與未來研究建議 67 5.1結論 67 5.2未來發展 67 參考文獻 68

    王勇華 (1993),「人員排班問題啟發式解法之應用」,國立交通大學土木工程學系碩士論文。
    李明德、曾俊欽 (2003),「科技客服,客服中心的系統建置」,培生教育出版集團。
    林詩芹 (2003),「以限制規劃構建全年無休服務人員排班模式 ─ 以客服人員排班為例」,國立交通大學運輸科技與管理學系碩士論文。
    周震平 (2000),「人才篇─客服中心人才招募、訓練及管理」,通訊雜誌,第76期,49-52頁。
    侯文哲 (2002),「護理人員排班資訊系統之建立與探討」,國立成功大學工業管理科學系碩士論文。
    高子欽 (2003),「魅力客服,客服中心的人員管理」,培生教育出版集團。
    曾世忠 (2003),「效率客服,客服中心的程序規劃」,培生教育出版集團。
    Angus, I. (2001), “An Introduction to Erlang B and Erlang C”, Telemanagement, Vol.187, pp. 6-8.
    Atlason, J. and Epelman, M. A and Henderson, S. G (2004), “Call Center Staffing with Simulation and Cutting Plane Methods”, Annals of Operations Research, Vol. 127, pp.333-358.
    Aykin , T. (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science, Vol. 42, No.4, pp. 591-602.
    Aykin , T. (1998), “A Composite Branch and Cut Algorithm for Optimal Shift Scheduling with Multiple Breaks and Break Windows”, The journal of the Operational Research Society, Vol. 49, No.6, pp. 603-615.
    Bailey, J. (1985), “Integrated Days off and Shift Personnel Scheduling”, Computers & Industrial Engineering, Vol. 9, No.4, pp. 395-404.
    Barboza, A. O. and Carnieri, C. and Steiner, M. T. A. and Siqueira, P. H. (2003), “OPERATIONS RESEARCH TECHNIQUES IN THE CALL CENTER SCHEDULE PROBLEM”, GESTÃO & PRODUÇÃO, Vol. 10, No. 1, pp. 109-127.
    Bard , J. F. and Binici, C. and deSilva, A. H. (2003), “Staff scheduling at the United States Postal Service”, Computers & Operations Research, Vol.30, pp. 745–771.
    Bartholdi, J.J. (1981), “A Graranteed-Accuracy Round-off Algorithm for Cuclic Scheduling and Set Covering”, Operations Research, Vol.29, pp.501-510.
    Beasley , J.E. and Cao, B. (1996), “A tree search algorithm for the crew scheduling problem”, European Journal of Operational Research, Vol. 94, pp. 517-526.
    Bhulai, S. and Koole ,G. and Pot, G. (2005), “Simple methods for shift scheduling in multi-skill call centers”, Technical report, Technical Report WS 2005-10, Free University, Amsterdam.
    Brusco, M. J. and Jacobs, L. W. (2000), “Optimal Models for Meal-break and Start-Time Flexibility in Continuous Tour Scheduling”, Management Science, Vol. 46, No. 12, pp. 1630-1641.
    Buffa, E. S and Cosgrove, M. J. and Luce, B. J. (1976), “An Integrated Work Shift Scheduling System”,Decision Sci, vol. 7,pp. 620–630.
    Burns, R. N. and Carter, M. W. (1985), “Work force size and single shift schedules with variable demands”, Management Science, Vol. 31, No. 5, pp. 599.
    Cai , X. and Li, K.N. (2000), “A genetic algorithm for scheduling staff of mixed skills under multi-criteria”, European Journal of Operational Research, Vol.125, pp.359-369.
    Causmaecker , P. D. and Demeester, P. and Berghe, G. V. and Verbeke, B. (2004), “Analysis of real-world personnel scheduling problems”, Proceedings of the 5th International Conference on Practice and Theory of Automated Timetabling, Pittsburgh, pp.183-197.
    Cezik, M. T. and L’Ecuyer, P. (2005), “Staffing multiskill call centers via linear programming and simulation”, Working paper.
    Cheng, B. M. W. and Lee, J. H. M. and Wu, J. C. K. (1997), “A Nurse Rostering System Using Constraint Programming and Redundant Modeling”, IEEE, Vol. 1, No. 1, pp. 1089-7771.
    Chun, H. W. and Chan, H. C. and Lam, P. S. and Tsang, M. F. and Wang, J and Yeung, W. M. (2000), “Nurse Rostering at the Hospital Authority of Hong Kong”, In proceedings of AAAI/IAAI Conference.
    Dantzig, G. B. (1954), “A Comment on Edie’s Traffic Delays at Toll Booths”, Operation Research, Vol.2 , pp.339-341
    Darmoni, S. J. and Fajner, A. and Mahé, N. and Vondracek, M. and Stelian, O. and Baldenweck, M. (1995), “Horoplan: computer-assisted nurse scheduling using constraint-based programming”, Journal of the Society for Health Systems, Vol. 5, No. 1, pp. 41-54.
    Eitzen , G. and Panton, D. (2004), “Multi-Skilled Workforce Optimisation”, Annals of Operations Research, Vol.127, pp.359–372.
    Henderson, W. B. and Berry, W. L. (1976), “Heuristic Methods for Telephone Operator Shift Scheduling: An Experimental Analysis”, Management Science, Vol. 22, No. 12, pp. 1372-1380.
    IBM (2000), Project-Based Object-Oriented Analysis and Design Modeling, IBM.
    ILOG, S. A. (2005), ILOG SOLVER: User’s Manual, ILOG, Inc. Mountain View, California, USA.
    Ingolfsson, A. and Cabral, E. and Wu, X. (2003), “Combining integer programming and the randomization method to schedule employees”, Technical report, School of Business,University of Alberta, Edmonton, Alberta, Canada, Preprint.

    Jarrah, A. I. and Bard, J. F. and deSilva, A. H. (1994), “Solving Large-Scale Tour Scheduling Problem”, Management Science, Vol. 40, No. 9, pp. 1124-1144.
    Keith, E. G. (1979), “Operator scheduling”, AIIE Transactions, Vol. 11, No. 1, pp.37–41.
    Kelley, J. E. (1960), “The Cutting-Plane Method for Solving Convex Programs”, Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 4, pp. 1383-1394.
    Koole, G and Sluis, E. V. D. (2003) “Optimal shift scheduling with a global service level constraint”, IIE Transactions , Vol. 35, pp. 1049–1055.
    Mabert , V. A. and Watts, C. A. (1982), “A Simulation Analysis of Tour-Shift Construction Procedures”, Management Science, Vol. 28, No. 5, pp. 520-532.
    Mcginnis, L. F. and Culver, W. D. and Deane R. H. (1977), “ONE- AND TWO-PHASE WORKFORCE SCHEDULING”, Computer & Industry Engineering, Vol. 2, pp. 7-15.
    Morris, J. G. and Showalter, M. J. (1983), “Simple Approaches to Shift, Days-Off and Tour Scheduling Problems”, Management Science, Vol. 29, No. 8, pp. 942-950.
    Mehrotra, A. and Murphy, K. E. and Trick, M. A. (2000), “Optimal Shift Scheduling: A Branch-and-Price Approach”, Naval Research Logistics, Vol. 47, No.3, pp. 185-200.
    Segal, M. (1974), “The Operator-Scheduling Problem: A Network-Flow Approach”, Operations Research, Vol. 22, No. 4, pp.808-823.
    Thompson, G. M. (1997) “Assigning Telephone Operators to Shifts at New Brunswick Telephone Company”, Interface, Vol. 27, No. 4, pp. 1-11.
    Thompson, G. M. (1997) “Labor Staffing and Scheduling Models for Controlling Service Levels”, Naval Research Logistics, Vol. 44, pp. 719-740.

    Topaloglu, S. and Ozkarahan, I. (2002), “Implicit optimal tour scheduling with flexible break assignments”, Computers & Industrial Engineering, Vol.44, pp. 75-89.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE