研究生: |
朱家□ Chu, Chia-Hsien |
---|---|
論文名稱: |
全寡分子聚合物電解質於染料敏化太陽能電池之研究 Study of Solvent-Free Oligomer Electrolytes for Dye-Sensitized Solar Cells |
指導教授: |
萬其超
Wan, Chi-Chao 王詠雲 Wang, Yung-Yun 王復民 Wang, Fu-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 染料敏化太陽能電池 、固態高分子 、電解質 、聚矽氧烷 |
外文關鍵詞: | dye-sensitized solar cells, solvent-free, solid-state, polymer electrolytes, PMHS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究一系列含氧烷基(ethylene oxide)官能基之聚合物作為染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)之非揮發性、高穩定性電解液。此高分子以氧烷基作為電子提供者,藉由和帶正電金屬離子例如鋰離子產生凡得瓦力吸引,幫助碘負離子解離出來。此高分子不僅有助於離子傳遞及氧化還原進行,並且扮以一¨溶劑¨之角色,電解質中毋須再加入其他溶劑來幫助解離,同時保留聚合物之高機械性質、高穩定性、低揮發性且利於加工之諸多優點,別於其他固態(不含溶劑)電解質,其優勢在於原物料便宜且合成容易。因此,此乃極具潛力作為DSSCs中之非揮發性固態電解質。
本研究首先開發出兩種新型固態高分子電解質,主要以聚矽氧烷(poly(methyl hydrosiloxane), PMHS) 為主鏈與含氧烷基之壓克力型寡聚物(Poly(ethyl glycol) methyl ether methacrylate, PEGMEMA)所構成之共聚物(PSEO),利用聚矽氧烷之低玻璃轉移溫度特性來修飾並改善聚氧烷聚合物高結晶度問題,幫助離子可以在不含溶劑時順利傳遞。合成之固態共聚物其黏度為10.48 Pa-S(為水之三百萬倍),黏度太高嚴重造成離子傳遞困難,使得導電度在常溫下只有10-5 S/cm,遠低於傳統有機溶劑(~10-2 S/cm)。為了改善此情況,於是藉重複單位(repeating unit)較少之PMHS合成出較小黏度之新共聚物(NPSEO),其黏度大幅降低至115.94 Pa-S,將其與氧化還原對混合成電解質並實際組成DSSC以測試其光電轉換效能,發現仍然成效不佳,室溫效率僅為0.3%,仍然無法擺脫固態高分子文獻中低轉換效率的困境。
為了擺脫高分子固化造成黏度過高的缺點,改以僅用PEGMEMA混以氧化還原對及PMII(3-propyl-methylimidazolium chloride)成二元電解質。其實驗結果顯示:目前電池效能最高可達Jsc=9.89 mAcm-2, Voc=0.62 mV, ff=0.57,η= 3.51 %,其室溫下導電度約為1.16 mS/cm,I3-之擴散係數高達4.98*10-7cm2/S,其兩項指標可比擬文獻中以EMIBCN/PMII混合之二元離子液體電解質以及其他以純聚合物加上PMII混參之類似系統。在經過室溫下的長效測試後,電池性能也具有一定穩定性。除此之外,論文中並將這一系列聚氧烷聚合物電解質做研究,包含黏度、導電度以及I3-之擴散係數等。綜合以上成果,本研究最後成功開發出一種新型無任何溶劑添加之聚合物電解質,其高導電度以及高穩定性以及物料便宜之特性,實為一極具潛力之電解質。
A series of polymers with ethylene oxide (EO) functional group were synthesized and analyzed as non-volatile and highly stable electrolyte for dye-sensitized solar cells (DSSCs). The oxide atoms of EO group can coordinate to lithium ions and facilitate ion-pair separation, which favors ionic conduction. In this way, polymer with EO group plays a role as not only ionic transport and reduction helper but also as “solvent,” which can dissolve ions without adding other real solvents. Meanwhile, using polymers as electrolyte take an advantage of high mechanical properties, high stability, extremely low volatility and also being favor of commercial use and so on. Compared with other solvent-free and solid-state electrolytes, this polymer electrolyte is easily synthesized and costs low. Therefore, this EO-containing polymer possesses a great potential candidate as solvent-free and solid-state electrolyte.
In our study, we synthesized two novel solid-state co-polymer electrolytes (PSEO) at first, which contain Poly (methyl hydrosiloxane) (PMHS) as main back bone and Poly (ethyl glycol) methyl ether methacrylate (PEGMEMA) as side chain. To solve the high crystallization of Poly (ethylene oxide) (PEO), PMHS, which has a low Tg (Tg= -138oC), was used to modify PEGMEMA so that the ion transport can conduct favorably without solvent. Unfortunately, the viscosity of PSEO is as high as 310.48 Pa-S, about three hundred times higher than water at room temperature. High viscosity makes it difficult for ion transport, so the ionic conductivity of PSEO is only around 10-5 S/cm, which is much lower than conventional organic solvent (~10mS). In order to improve the problem of high viscosity, we used PMHS with less repeating units to obtian a new EO-containing co-polymer (NPSEO) with viscosity as low as 115.94 Pa-S. Mixing NPSEO and redox pairs together and fabricating into DSSCs to observe the cell performance and we found an unexpected results: the conversion efficiency is as low as 0.3%.
To get rid of the drawback of high viscosity for solidlike polymers, we used only PEGMEMA instead of using co-polymers and form a binary electrolyte with redox pairs. The results that cell performance of PEGMEMA-based electrolytes in DSSCs presented are η= 3.51%, Jsc= 9.89 mA/cm2, Voc= 0.62 mV, ff= 0.57. Their ambient ionic conductivity is 1.16 mS/cm and the diffusion coefficient of tri-iodide dominates at around 4.98×10-7cm2/S. These two indexed can be compared to EMIBCN/PMII mixing binary ionic liquid reported or other similar PMII-doping system. After long-term stability at room temperature, the cell performance keeps at a stable condition. Except for that, we study the series EO-containing polymers in this study including viscosity, ionic conductivity and diffusion coefficient of tri-iodide and so on. In conclusion, we developed a novel solvent-free polymer-based electrolyte successfully, which has a great potential due to its high ionic conductivity, high stability and cheap properties.
1. P.Wang, B.W., R. Humphry-Baker, J. E. Moser, J. Teuscher, W. kantlehner, j. Mezger, E V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel (2005). Charge separation and efficient light energy conversion ion sensitized mesoscopic silar cells basd on binary ionic liquids. J. Am. Chem. Soc 127, 6850-6856.
2. Vogel, H. (1878). Lehrbuch der photographie. Berlin.
3. Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 164, 3-14.
4. J. M. Kroon, N.J.B., H. J. P. Smit, P. Liska, K. R. Thampi, P.Wang, S.M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U.Würfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G. E. Tulloch (2007). Nanocrystalline Dye-sensitized Solar Cells Having Maximum Performance. Prog, Photovolt: Res. Appl. 15, 1-18.
5. Grätzel, M. (2000). Perspectives for dye-sensitized nanocrystalline solar cells,. Prog.Photovolt. Res. Appl. 8, 171-185.
6. Grätzel, M. (2001). Photoelectrochemical cells. Nature 414, 338-344.
7. Q. Wang, J.-E.M., M. Grätzel, (2005). Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945-14953.
8. K. Tennakone∗, P.V.V.J., P.K.M. Bandaranayake (2003). Dye-sensitized photoelectrochemical and solid-state solar cells: charge separation, transport and recombination mechanisms. J. Photochem. Photobiol. A-Chem. 158, 125–130.
9. Jilian Nei de Freitas, A.F.N.a.M.-A.D.P. (2009). New insights into dye-sensitized solar cells with polymer electrolytes. J. Mater. Chem. 19, 5279-5294.
10. Shinji Murai, S.M., Hiroyasu Sumino, Shuzi Hayase (2002). Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel.How to make gels with a small amount of gelator. J. Photochem. Photobiol. A-Chem. 148, 33-39.
11. Yang, Y., Zhang, J., Zhou, C.H., Wu, S.J., Xu, S., Liu, W., Han, H.W., Chen, B.L., and Zhao, X.Z. (2008). Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. Journal of Physical Chemistry B 112, 6594-6602.
12. G. Nazmutdinova, S. Sensfuss, M. Schrödner, A. Hinsch, R. Sastrawan, D. Gerhard , S. Himmler, P. Wasserscheid (2006). Quasi-solid state polymer electrolytes for dye-sensitized solar cells: Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode Solid State Ionics 177, 3141.
13. K. Tennakone, G.K., A.R. Kumarasinghe, K.G.U. Wijayantha, P.M. Sirimanne, (1995). Semiconductor Science and Technology 10, 1689.
14. Grra. Kumara, A.K., G.K.R. Senadeera, P.V.V. Jayaweera, Dbra. De Silva, K. Tennakone, (2001). Solar Energy Materials & Solar Cells 69, 195.
15. B. O’Regan, D.T.S. (1998). Chemical Materials 10, 1501.
16. K. Tennakone, G.K.R.S., Dbra. De Silva, I.R.M. Kottegoda,, and . (2000). Applied Physics Letters 77, 2367.
17. Greg P. Smestada, S.S., Janusz Kowalikc, Christian D. Grant, Adam M. Schwartzbergd, Jin Zhangd, and , L.M.T., Ellen Moons (2003). A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Solar Energy Materials & Solar Cells 76, 85-105.
18. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583-585.
19. Gratzl, M. (2005). Dye-Sensitized Solid-State heterojunction Solar Cells. Mrs Bulletin 30, 23-27.
20. T. Welton (2004). Chem. Rev. 248, 2459.
21. Peng Wang, S.M.Z., Jacques-E. Moser, Michael Gratzel (2003). A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. J. Phys. Chem. B 107, 13280-13285.
22. Kazuo Murata, S.I.a.Y.Y. (2000). An overview of the research and development of solid polymer electrolyte batteries Electrochemica. Acta 45, 1501.
23. F. Croce, G.B.A., L. Persi, B. Scrosati, (1998). Nature 394 456.
24. Scrosati, B. (1998). Polymer International 47, 50.
25. F. Croce, L.P., F. Ronci, B. Scrosati (2000). Solid State Ionics 135, 47.
26. T. Fukumasa, M.M., H. Tsutsumi, Y. Matsuda, T.Takahashi, H. Ashitaka (1990). Extended Abstracts of 31st Japanese Battery Symposium 1A16, 35.
27. D. Fish, I.M.K., J. Smid, Br. (1988). Polymer Journal 20, 281.
28. Nogueira, A.F., Longo, C., and De Paoli, M.A. (2004). Polymers in dye sensitized solar cells: overview and perspectives. Coordination Chemistry Reviews 248, 1455-1468.
29. D. E. Fenton, J.M.P.a.P.V.W. (1973). Polymer 14, 589.
30. Armand, M.B. (1994). Solid State Ionics 69, 309.
31. P. G. Hall, G.R.D., J.E. McIntyre, I.M. Ward, D. J. Banister, K. M. F. Le Brocq (1986). Polym. Commun. 27, 98.
32. D. Fish, I.M.K., J. Smid, (1986). Makromol. Chem. Rapid. Commun 9, 115.
33. Stergiopoulos, T., Arabatzis, I.M., Katsaros, G., and Falaras, P. (2002). Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Letters 2, 1259-1261.
34. Kang M. S, K.J.H., Kim Y. J, Won J, Park N. G, Kang Y.S. (2005). Chem. Commun, 889.
35. Jun Young Lee, B.B., Dong-Woo Kim, and Jung-Ki Park (2008). Poly(ethylene oxide)/Poly(dimethylsiloxane) Blend Solid Polymer Electrolyte and Its Dye-Sensitized Solar Cell Applications. J. Phys. Chem.C 112, 12576-12582.
36. Jong Hyuk Park , K.J.C., Junkyung Kima, Yong Soo Kang , Sang-Soo Lee (2007). Effect of molecular weight of oligomer on ionic diffusion in oligomer electrolytes and its implication for dye-sensitized solar cells J. Power Sources 173, 1029-1033.
37. Wanchun Xiang, S.Z., Xiong Yin, Xurui Xiao, Yuan Lin and Shibi Fang (2009). Polymer electrolytes using in situ quanternization for al solid -state dye-sensitized solar cells Polym.Adv.Technol 2009, 519-523.
38. Zhang, J., Han, H.W., Wu, S.J., Xu, S., Zhou, C.H., Yang, Y., and Zhao, X.Z. (2007). Ultrasonic Irradiation to Modify the PEO/P(VDF-HFP)/TiO2 Nanoparticle Composite Polymer Electrolyte for Dye-Sensitized Solar Cells. Nanotechnology 18.
39. Wu, J.H., Hao, S., Lan, Z., Lin, J.M., Huang, M.L., Huang, Y.F., Li, P.J., Yin, S., and Satot, T. (2008). An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society 130, 11568-+.
40. M. Armand, i.J.R.M., C.A. Vincent (Eds.) (1987). Polymer Electrolyte Reviews-1.
41. Nishimoto, M.W.a.A. (2003). Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes Solid State Ionics 79, 306-312.
42. Yanmin Wang, H. (2009). Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Materials & Solar Cells 93, 1167-1175.
43. P.J. Li, J.H.W., M.L. Huang, S.C. Hao, Z. Lan, Q. Li, S. Kang (2007). The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature. Electrochemica. Acta 53, 903–908.
44. R.A. Robinson, R.H.S. (1959). Electrolyte Solutions, (London).
45. Z. Lan, J.W., D.Wang, S. Hao, J. Lin, Y. Huang, (2006). Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2. Sol. Energy 80, 1483–1488.
46. F. Müller-Plather, W.F.v.G. (1995). J. Chem. Phys. 103, 4745-4755.
47. Papageorgiou, N. (2004). Counter-Electrode Function in Nanocrystalline Photoelectrochemical Cell Configurations. Coordination Chemistry Reviews 248, 1421-1446.
48. N. Papageorgiou, P.L., A. Kay, and M. Grätzel (1999). Mediator Transport in Multilayer Nanocrystalline Photoelectrochemical Cell Configurations. J. Electrochem. Soc. 146, 898-907.
49. N. Papageorgiou, M.G., P.P. Infelta (1996). On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells Sol. Energy Mater. Sol. Cells 44, 405-438.
50. Watanabe, R.K.a.M. (2003). Equlibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid J. Am. Chem. Soc, 330-331.
51. Joao Eduardo Benedetti, M.A.d.P.a.A.F.N. (2008). Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte Chem. Commun, 1121 - 1123.
52. M.J. Ross, K.R.W. (1987). Impedance Spectroscopy: Emphasizing Solid Materials and Systems, (New York: John Wiley & Sons).
53. Qing Wang, J.-E.M., and Michael Gratzel (2005). Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem. B 109, 14945-14953.
54. Bisquert, J. (2002). Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. J. Phys.Chem.B 106, 325-333.
55. Chao-Po Hsu, K.-M.L., Joseph Tai-Wei Huang, Chia-Yu Lin, Chia-Hua Lee, Lih-Ping Wang, Song-Yeu Tsai, Kuo-Chuan Ho (2008). EIS Analysis on Low Temperature Fabrication of TiO2 Porous Films for Dye-sensitized Solar Cells. Electrochemica. Acta 53, 7514-7522.
56. Claudia Longo, A.F.N., and Marco-A. De Paoli (2002). Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy. J. Phys. Chem.B 106, 5925-5930.
57. Ito, S., Murakami, T.N., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M.K., and Gratzel, M. (2008). Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Volume 516. pp. 4613-4619.
58. Bhaskar Bhattacharya, h.y.l., Jianxinn Geng, hee-tae jung , and Jung-Ki park (2009). Effect of cation Size on Sold Polymer Electrolyte Based dye-Sensitized Solar Cells. Langmuir 25, 3276-3281.
59. Meyer, W.H. (1998). Polymer electrolytes for lithium-ion batteries. Advanced Materials 10, 439-+.
60. H. S. Choe, B.G.C., D. M. Pasquariello, and K. M. Abraham (1997). Characterization of Some Polyacrylonitrile-Based Electrolytes. Chemistry of Materials 9, 369-379.
61. T.C. Wei, C.C.W., Y.Y.Wang (2007). Preparation and Characterization of a micro-porous Polymer Electrolyte with Cross-linking Network Structure for Dye-sensitized Solar Cell. Solar Energy Materials & Solar Cells 91, 1892.
62. J. Y. Song, Y.Y.W., and C. C. Wan (2000). Conductivity Study of Porous Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride) A Comparison with Polypropylene Separators. Journal of Electrochemical Society 147, 3219.
63. Kloo, M.G.a.L. (2008). Ionic liquid electrolytes for dye-sensitized solar cells
Dalton Transactions, 2655-2666
64. T. Miyamoto, K.S. (1973). Free-Volume Model for Ionic Conductivity in Polymers. J. Appl. Phys. 44, 5372-5376.
65. Daibin Kuang, P.W., Seigo Ito, Shaik. M. Zakeeruddin,and Michael Gratzel (2006). Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte. J. Am. Chem. Soc 128, 7732-7733.
66. V. A. Macagno, M.C.G. (1969). Kinetics and Mechanisms of Electrochemical reactions on Platinum with Solutions of Iodine-Sodium Iodide in Acetionitrile. Electrochemica. Acta 14, 335.
67. V. A. Macagno, M.C.G. (1966). Study of the Iodide/triiodide Redox Electrode in Dimethylsulphoxide. Electrochemica. Acta 11, 1553.
68. Yu Bai, Y.C., Jing Zhang, Mingkui Wang, Renzhi Li, Peng Wang, Shaik M. Zakeeruddin and Michael Gratzel (2008). High-performance Dye-sensitized Solar Cells based on Solvent-free Electrolytes Produced from Eutectic Melts. Nature Materials 7, 626-630.
69. S. Ata, M.M., J. Takeda, T. Ohdaira, R. Suzuki, K.Ito, Y. Kobayashi, T. Ougizawa (2009). Free volume behavior in spincast thin film of polystyrene by energy variable positron annihilation lifetime spectroscopy. Polymer 50, 3343-3346.
70. Wang, F.M. (2009). Investigation of Lithium Ionic Transfer Mechanism of Modified Polysiloxane Electrolyte and Its Application in Battery.