研究生: |
楊世芬 Yang, Shih Fen |
---|---|
論文名稱: |
高鐵酸鉀的製備及應用於降解四環素(TC), 鄰苯二甲酸二甲酯(DMP), 和泰勒菌素(TYL) Preparation of Potassium Ferrate(VI) for degradation of Tetracycline (TC), Dimethyl Phthalate ester (DMP), and Tylosin (TYL) |
指導教授: |
董瑞安
Doong, Ruey An |
口試委員: |
孫毓璋
Sun, Yuh Chang 張淑閔 Chang, Sue Min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 高鐵(VI)酸鉀 、二氧化鈦(TiO2) 、UV照射 、四環素(TC) 、鄰苯二甲酸二甲酯 (DMP) 、泰樂菌素(TYL) 、電子順磁共振譜(EPR) |
外文關鍵詞: | Ferrate(VI), TiO2, UV irradiation, Tetracycline (TC), Dimethyl phthalate ester (DMP), Tylosin (TYL), EPR spectrum |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高鐵(VI)酸鉀是一種具有高氧化電位的強氧化劑,且因其無毒性之產品——鐵(III)離子或鐵(III)氫氧化物——高鐵(VI)酸鉀也是綠色化學藥劑。在本研究中,使用高鐵(VI)酸鉀來降解新興污染物,包括四環素(TC)、鄰苯二甲酸二甲酯(DMP)和泰樂菌素(TYL),並在pH值7.0 -10.0 的範圍進行研究。經由液相色譜-質譜法(LC-MS),本研究中還確定了高鐵(VI)酸鉀降解新興污染物的副產品。高鐵(VI)酸鉀對水溶液中的TC,DMP和TYL的降解具有良好的氧化潛力。由電子順磁共振(EPR)和液相色譜-質譜法顯示,高鐵(VI)酸鉀可產生鐵-氧自由基(iron-oxo radicals),自由基與 DMP的芳香烴環反應,生成di-hydroyxl-DMP和tri-hydroyxl-DMP。研究結果顯示二氧化鈦(TiO2)/ UV輻射的添加可增強DMP的降解,因其可生成氫氧自由基(.OH)與DMP的烷基鏈反應,產生monomethyl phthalate和 mono-hygroxyl-phthalate。此外,研究中也探討了高鐵(VI)酸鉀結合二氧化鈦(TiO2)/ UV輻射對TYL的分解。高鐵(VI)酸鉀可迅速且有效的分解TYL,並在1分鐘內完全反應。由研究結果可清楚地顯示,對四環素、鄰苯二甲酸二甲酯、泰樂菌素的分解而言,高鐵(VI)酸鉀是一種有效的綠色化學藥劑,同時也可成為水和廢水處理中的新興污染物移除之創新進階技術。
Ferrate(VI) is a powerful oxidant with the high oxidation potential, and a green chemical with its non-toxic product, i.e. ferric ions or ferric hydroxides. In this syudy, the potential use of ferrate(VI) for the degradation of emerging pollutants including tetracycline (TC), dimethyl phthalates (DMP) and tylosin (TYL) at various pHs ranging from 7.0-10.0 was investigated. The degradation byproducts of emerging pollutants by ferrate(VI) were also identified by liquid chromatography-mass spectrometry. ferrate(VI) exhibits the good oxidation potential for the degradaation of TC, DMP and TYL in aqueous solutions. EPR and LC-MS spectra showed that ferrate(VI) can produce iron-oxo radicals to attack the aromatic ring of DMP to produce di-hydroyxl-DMP and tri-hydroyxl-DMP. Addition of TiO2 improved the DMP degradation by ferrate(VI) under UV light irradation and the produced .OH radicals attacked the alkyl chains of DMP yo form monomethyl phthalate and mono-hygroxyl-phthalate. In addition, the decomposition of TYL by ferrate(VI) in the presence of TiO2/UV irradition was investigated. Ferrate(VI) is an effective chemical to rapidly decompose TYL and the reaction can be completed within 1 min. Results obtained in this study clearly indicate that ferrate(VI) is an effective green chemical for decomposition of tetracycline, dimethyl phthalate, and tylosin, which open an avenue to design the new advanced technology for removal of emerging pollutants in water and wastewater treatment.
[1] Westerhoff, P.; Yoon, Y., Snyder, S.; Wert, E.. Environ. Sci. Technol., 2005, 39, 6649-6663.
[2] Daughton, C. H.; Ternes, T. A. Environ. Health Perspect, 2000, 108, 598-598.
[3] Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T.. Environ. Sci. Technol., 2002, 36, 1202-1211.
[4] Piva F.; Martini L.. Pure and Applied Chemistry, 1998, 70(9),1647-1656.
[5] Thorpe K. L.; Hutchinson T. H.; Hetheridge M. J.; Scholze M.; Sumpter J. P.; Tyler C. R.. Environ Sci Technol., 2001, 35(12), 2476-2481.
[6] Adams, C.; Wang, Y.; Loftin, K.; Meyer, M. J.. Environ. Eng.-ASCE, 2002, 128, 253-260.
[7] Huber, M. C.; Canonica, S. Park, G. Y.; Gunten, U. V.. Environ. Sci. Technol., 2003, 37, 1016-1024.
[8] Acero, J. L.; Von Gunten, U. J.. Am. Water Works Assoc., 2001, 93, 90-100.
[9] Von Gunten, U.. Wat. Res., 2003, 37, 1443-1467.
[10] Sharma V. K.; Nigel J. D. Graham; Xiang-Zhong Li; Bao-Ling Yuan. Environ Sci Pollut Res., 2010, 17, 453–461.
[11] Rush, J.D.; Zhao, Z.; Bielski, B.H.J.. Free Rad. Res., 1996, 24, 187-198.
[12] Sharma V.K.. Coordination Chemistry Reviews, 2013, 257, 495–510.
[13] Lee, D.G.; Gai, A.H. Can. J.. Chem., 1993, 71, 1394-1400.
[14] Wagner, W.F.; Gump, J.R.; Hart, E.N.. Anal. Chem., 1952, 24, 1397.
[15] Wagner W.F.. Anal. Chem., 1952, 24 (9),1497–1498.
[16] Ji Zhao; Reza Iranpour; Xinyong Li; Bo Jin. Advanced Material Research, 2013, Vol.726-731, 2333-2337.
[17] Tiwari D.; Kim H.U.; Choi B.J.; Lee S.M.; Kwon O.H.; Choi K.M.; Yang J.K.. J. Environ. Sci. Health A, 2007, 42, 803-810.
[18] C. Li; X.Z. Li; N. Graham; N.Y. Gao. Water Res., 2008, 42, 109–120.
[19] V.K. Sharma; S.K. Mishra; N. Nesnas. Environ. Sci. Technol., 2006, 40, 7222–7227.
[20] Y. Lee; J. Yoon; U. von Gunten. Environ. Sci. Technol., 2005, 39, 8978–8984.
[21] Lee, Y.; Cho, M.; Kim, J.; Yoon, J.. J. Ind. Eng. Chem., 2004, 10, 161-171.
[22] C.A.O Rosell. J. Am. Chem. Soc., 1895,17 (10) , 760–769.
[23] Jiang, J.Q.; Lloyd, B.. Wat. Res., 2002, 36, 1397-1408.
[24] Barry Lloyd; Jia-Qian Jiang. Water Research, 2002, 36, 1397–1408.
[25] Thompson G.W.; Ockerman L.T.; Schreyer J.M.. Chem Anal., 1951, 73, 1379–81.
[26] Schreyer J.M.; Thompson G.W.; Ockerman L.T.. Inorg Syn., 1953, 4, 164–168.
[27] Williams D.H.; Riley J.T.. Inorg. ChimActa., 1974, 8, 177–83.
[28] V. K. Sharma. Coordination Chemistry Reviews, 2013, 257, 495– 510.
[29] Diwakar Tiwari1; Seung-Mok Lee. Waste Water Treatment and Reutilization(Intech).
[30] Sharma V.K.; Hollyfield, S.. Prep. Pap. Matl. Meet.- Am. Chem. Soc. Div. Environ. Chem., 1995, 35, 63-66.
[31] Jhonson M.D.; Read J.F.. Inorg. Chem., 1996, 35, 6795-6799.
[32] Sharma V.K.; Bielski B.H.J.. Inorg. Chem., 1991, 30, 4306-4310.
[33] Carr J.D.; Kelter P.B.; Tabatabai A.; Splichal D.; Erickson J.; McLaughlin C.W. In: Jolley, R.L.. (Ed.) Proceedings of Conference on Water Chlorination Chem. Environment Impact Health Eff. Lewis Chelsew, 1985, 1285-1298.
[34] Johnson M.D.; Hornstein B.. Inorg. Chim. Acta., 1994, 225, 145-150.
[35] Bielski B.H.J.. Free Rad. Res. Comms., 1991, 12, 469-477.
[36] Lee Y.H.; Um I.H.; Yoon J.. Environ. Sci. Technol., 2003, 37, 5740.
[37] Jain A.; Sharma V.K.; Mbuya M.S.. J.Haz. Mater., 2009, 169, 339-344.
[38] Bartzatt R.; Cano M.; Jhonson D. J.. Toxicol.Environ. Health, 1992, 35, 205-210.
[39] Jhonson M.D.; Bernard J.. Inorg. Chem., 1992, 31, 5140-5142.
[40] Yngard R.A.; Sharma V.K.; Filip J.; Zboril R.. Environ. Sci. Technol., 2008, 42, 3005-3010.
[41] Yngard R.A.; Damrongsiri S.; Sharma V.K.. Chemosphere, 2007, 69, 729-735.
[42] Sharma V.K.; Rivera W.; Smith J.O.; O’Brien B.. Environ. Sci. Technol., 1998, 32, 2608-2613.
[43] Shrama V.K.; Bumett C.R.; O’Connor D.B.; Cabelli D.. Environ. Sci. Technol., 2002, 36, 4182-4186.
[44] Yngard, R.A.; Damrongsiri, S.; Sharma, V.K.. Chemosphere, 2007, 69, 729-735.
[45] Sharma, V.K.; Kazma, F.; Jiangyong, H.; Ray, A.K.. J.Wat.Health, 2005, 3, 45-58.
[46] United States Environmental Protection Agency (USEPA). Special Report on Environmental Endocrine Disruption: An Effects Assessment and Analysis. Washington, DC: Office of Research and Development,1997.
[47] Introduction to Endocrine Disrupting Chemicals(EDCs), Endocrine Society, 2012.
[48] Jiang, J.Q.; Yin, Q.; Zhou, J.L. Pearce P.. Chemosphere, 2005, 61, 544-550.
[49] Lee, Y.; Yoon, J.; von Gunten, U.. Environ. Sci. Technol., 2005, 39, 8978-8984.
[50] Panyue Zhang; Guangming Zhang; Jinhua Dong; Maohong Fan; Guangming Zeng.. Separation and Purification Technology, 2012, Vol. 84(9), 46–51.
[51] U.S. Environmental Protection Aqency, Reseach and Development, PPCPs.
[52] Pharmaceuticals and Personal Care Products in the Environment, Endocrine Society.
[53] Boyd GR; Reemtsma H; Grimm D.A.; Mitra S.. Sci Total Environ., 2003, 20, 311(1-3), 135-49.
[54] Yang B.; Ying G.G.; Zhao J.L.; Liu S.; Zhou L.J.; Chen F.. Water Research, 2012, 46, 2194~2204.
[55] Sharma V.K.; Mishra S.K.; Ray A.K.. Chemosphere, 2006, 62(1), 128-34.
[56] Sharma VK; Mishra S.K.; Nesnas N.. Environ Sci Technol., 2006, 40(23), 7222-7.
[57] V. K. Sharma; Santosh K. Mishra. Environmental Chemistry Letters, 2006, Vol. 3(4), 182-185
[58] Zimmermann S.G.; Schmukat A.; Schulz M.; Benner J.; Gunten U.; Ternes T.A.. Environ Sci Technol., 2012, 46(2), 876-84.
[59] Murmann, R.K.; Robinson, P.R.. Wat. Res., 1974, 8, 543-547.
[60] Jiang J.Q.; Wang S.; Panagoulopoulos A.. Chemosphere, 2006, 63(2), 212-9.
[61]Jessen A.; Randall A.; Reinhart D.; Daly L.. Water Environ Res., 2008, 80(6), 561-9.
[62] Abdellatifel Maghrauot; Abdelaziz Zerouale; Mustapha Ijjaali; Kawtar Fikri; Benbrahim.. African journal of microbiology research, 2013, 7(28), 3690-3697.
[63] Jiang, J.Q.; Wang, S.; Panagoulopoulos, A.. Desalination, 2007, 210, 266-273.
[64] J.D. Rush; B.H.J. Bielski. J. Am. Chem. Soc., 1986, 108, 523–525.
[65] B.H.J. Bielski; M.J. Thomas. J. Am. Chem. Soc., 1987, 109, 7761–7764.
[66] V. K. Sharma; Christopher R. Burnett; Donald B. O'Connor; Diane Cabelli. Environ. Sci. Technol., 2002, 36 (19), 4182–4186.
[67] Sharma V.K.. Water Sci Technol., 2004, 9(4), 69-74.
[68] Sharma V.K; Burnett C.R.; Yngard R.A.; Cabelli D.E.. Environ Sci Technol., 2005, 39(10), 3849-54.
[69] Sharma V.K.; Kazama F; Jiangyong H; Ray A.K.. J. Water Health, 2005, 3(1), 45-58.
[70] Bielski, B.H.J.; Thomas, M.J.; J. Am. Chem. Soc., 1987, 109, 7761-7764.
[71] Sharma V.K.; Environ. Sci. Technol., 2010, 44, 5148–5152
[72] Johnson, M. D.; Sharma, K. D.. Inorg. Chim. Acta., 1999, 293, 229–235.
[73] Rush, J.D.; Bielski, B.H.J.; Free Rad. Res., 1995,22, 571-579.
[74] Huang, H.; Sommerfield, D.; Dunn, B.; Eyring, E.M.; Lloyd, C.R.. J.Phys. Chem. A, 2001, 195, 3536-3541.
[75] Johnson, M.D.; Hornstein, B.J.; Inorg. Chim. Acta., 1994, 225, 145-150.
[76] Johnson, M.D.; Hornstein, B.J.. Chem. Commun., 1996, 965-966.
[77] Johnson, M.D.; Hornstein, B.J.. Inorg. Chem., 2003, 42, 6923-6928.
[78] Jia-Qian Jiang; Barry Lloyd. Water Research, 2002, 36, 1397–1408.
[79] Jia H.D.; Yang X.L.; Yang Y.; Gao Y.. Chin. J. Anal. Chem., 1999, 27, 617
[80] Akira Fujishima; Tata N. Rao; Donald A. Tryk. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1–21.
[81] Zheng Huang; Pin-Ching Maness; Daniel M. Blake; Edward J. Wolfrum; Sharon L. Smolinski. J. Photochem. Photobiol. A. Chem., 2000, 130(2-3), 163–170.
[82] Taketoshi Murakami; Akira Fujishima.Expanding Industrialization of Photocatalysts, 2010, June.
[83] Marta Castellote; Nicklas Bengtsson. Principles of TiO2 Photocatalysis.
[84] Nozawa M.; Tanigawa K.; Hosomi M.; Chikusa T.; Kawada E.. Water Sci Technol., 2001, 44(9),127-33.
[85] Lobna Mansouri; Latifa Bousselmi. Desalination and Water Treatment, 2012, Vol. 40(1-3), 63-68.
[86] Du Erdeng; Zhang Yuxian; Wang Liping; Guo Yingqing. International Conference on Bioinformatics and Biomedical Engineering - ICBBE, 2011, 1-4.
[87] Ralph W. Matthews; Stephen R. McEvoy; Journal of Photochemistry and Photobiology A: Chemistry, 1992, 64(2) , 231–246.
[88] Chen Xu; G. P. Rangaiah; X. S. Zhao. Ind. Eng. Chem. Res., 2014, 53(38), 14641–14649.
[89] H. Liu; X. Ye; Z. Lian, Y. Wen; W. Shangguan. Res. Chem. Intermed., 2006, 32, 9.
[90] Umar Ibrahim Gaya; Abdul Halim Abdullah. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(1), 1–12.
[91] Dionysios D. Dionysiou. Applied Catalysis B: Environmental, 2012, 125, 331–349.
[92] Z. Guo; R. Ma; G. Li; Chem. Eng. J., 2006, 119, 55.
[93] Manoj A. Lazar; Shaji Varghese; Santhosh S. Nair. Catalysts, 2012, 2, 572-601.
[94] G. H. Safari; M. Hoseini; M. Seyedsalehi; H. Kamani; J. Jaafari; A. H. Mahvi. International Journal of Environmental Science and Technology, 2015, 12(2), 603-616.
[95] K. Fischer; M. Kühnert; R. Gläser; A. Schulze. RSC Adv., 2015, 5, 16340-16348.
[96] Goodman, G.A.; Goodman, L.S.; Rall, T.W.; Murad, F. (Eds.), The Pharmacological Basis of Therapeutics, seventh ed., 1985.
[97] Cherlet, M.; Croubels, S.; De Becker. P. J. Chromatogr. A, 2006, 1102, 116-124.
[98] Reyes, C.; Fernandez, J.; Freer, J.; Mondaca, M. A.; Zaror, C.; Malato, S.; Mansilla, H. D.. J. Photochem. Photobiol. A-Chem., 2006, 184, 141-146.
[99] Dodd, M. C.; Buffle, M. O.; Von Guten U. Environ. Sci. Technol., 2006, 40, 1969-1977.
[100] Xu-Liang Cao. Comprehensive Reviews in Food Science ad Food Safety, 2010, 9(1), 21-43.
[101] U.S. Environmental Protection Agency. Fed. Regist., 49, 43305, 12.
[102] C. A. Staples; D. R. Peterson; T. F. Parkerton; W.J. Adams. Chemosphere, 1997, 35, 667-749.
[103] W. E. Gledhill; R. G. Kaley; W. J. Adams; O. Hicks; P. R. Michael; V. W. Saeger; G. A.LeBlanc. Environ. Sci. Technol., 1980, 14, 301.
[104] John Autian. Toxicity and Health Threats of Phthalate Esters: Review of the Literature , Environmental Health Perspectives, 1973, June.
[105] Field EA; Price C.J.; Sleet R.B.; George J.D.; Marr M.C.; Myers C.B.; Schwetz B.A; Morrissey R.E.. Teratology, 1993, 48(1), 33-44.
[106] B. L. Yuan; X. Z. Li; N. Graham. Chemosphere, 2008, 72, 197-204.
[107] Wang Y; Fan Y; Gu J.D.. Bull Environ Contam Toxicol., 2003, 71(4), 810-8.
[108] Xiang-Rong Xua; Hua-Bin Lia; Ji-Dong Gu. International Biodeterioration & Biodegradation, 2005, 55(1), 9-15.
[109] Xuejun Ding; Taicheng An; Guing Li; Jiaxin Chen; Guoying Sheng; Jiamo Fu; Jincai Zhao. Res. Chem. Intermed., 2008, 34(1), 67– 83.
[110] Bin Xua; Nai-yun Gaoa; Hefa Cheng; Sheng-ji Xia; Min Rui; Dan-dan Zhao. Journal of Hazardous Materials, 2009, 162, 954–959.
[111] Fei Wang; Jun Yao; Ke Sun; Baoshan Xing. Environ. Sci. Technol., 2010, 44, 6985–6991.
[112] Xue-Kun Zhao; Gui-Peng Yang; Yu-Jue Wang; Xian-Chi Gao. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161, 215–220.
[113] Dingfei Hu; Joel R. Coats. Environmental Toxicology and Chemistry, 2007, 26(5), 884–889.
[114] Kolz et al.. Water Environment Research, 2005, 77(1), 49-56.
[115] Flemming Ingerslev; Bent Halling-Sørensen. Ecotoxicology and Environmental Safety, 2001, 48, 311-320.
[116] Kolz A.C.; Moorman T.B.; Ong S.K.; Scoggin K.D.; Douglass E.A.. Water Environ Res., 2005, 77, 49–56.
[117] Ingerslev F; Halling-Sørensen B. Ecotoxicology and Environmental Safety, 2001, 48, 311–20.
[118] D. Tassalit; A. N. Laoufi; F. Bentahar. Science of Advanced Materials, 201, 3, 944–948.
[119] Sharma, V. K.. Adv. Environ. Res., 2002, 6, 143-156.
[120] Jiang, J. Q.; Lloyd, B.. Wat. Res., 2002, 36, 1397-1408.
[121] Lee, Y.; Yoon, J.; Gunten, U. V.. Wat. Res., 2005, 39, 1946-1953.
[122] Bielski, B. H. J.; Thomas, M. J.. J. Am. Chem. Soc., 1987, 109, 7764-7791.
[123] Zhiyong Guo; Danyi Wei; Meili Wang; Sui Wang. Journal of Chromatographic Science, 2010, 48, 760-765.
[124] Dae Hyun Yoo; Sang Kuk Han; Myun Joo Lee; Joon Wun Kang. J. Ind. Eng. Chem., 2005, 11(2), 215-221.
[125] Lee, Y.; Yoon, J.; Gunten, U. V.. Wat. Res., 2005, 39, 1946-1953.
[126] Oka, H.; Ito, Y.; Ikai, Y.; Kagami, T.; Harada, K. I. J. Chromatogr. A., 1998, 812, 309-319.
[127] Cherlet, M.; Schelkens, M.; Croubels, S.; De Becker, P.. Anal. Chim. Acta, 2003, 492, 199-213.
[128] Panyue Zhang; Guangming Zhang; Jinhua Dong; Maohong Fan; Guangming Zeng. Separation and Purification Technology, 2012, 84, 46–51.
[129] Graham N.; Jiang C.C.; Li X.Z.; Jiang J.Q.; Ma J.. Chemosphere, 2004, 56(10), 949-56.
[130] V. K. Sharma. Advances in Environmental Research, 2002, 6, 143-156.
[131] V. K. Sharma. Environ. Sci. Technol., 2010, 44, 5148–5152.
[132] Zhiyong Guo; Danyi Wei; Meili Wang; Sui Wang. Journal of Chromatographic Science, 2010, 48, 760-765.