簡易檢索 / 詳目顯示

研究生: 蘇彥輔
Su, Yen-Fu
論文名稱: 高功率發光二極體之散熱設計與光衰壽命測試
Design of Thermal Performance and Light Degradation Test for High-power Light Emitting Diode
指導教授: 江國寧
Chiang, Kuo-Ning
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 發光二極體有限單元分析光衰壽命測試熱能管理
外文關鍵詞: Light Emitting Diode (LED), Finite Element Analysis, Life Test, Thermal Management
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地球暖化現象日趨嚴重,綠色科技產品在近幾年發展越來越快速,發光二極體即為眾多綠色科技產品之一。發光二極體具有高亮度、壽命長、省電及低污染等優點。在環保意識抬頭的今日,使用對環境汙染較小且消耗功率較低的發光二極體,取代傳統的白熾燈泡及日光燈勢必是未來的趨勢。然而,發光二極體的光電轉換效率仍然過低,大部份的輸入能量皆以熱能的形式輸出,造成晶片接面溫度上升,此現象將導致晶片發光強度降低、減少使用壽命。因此,對發光二極體進行有效的熱能管理將是發光二極體產業共同努力及研究的目標。
    本研究根據熱傳導基本理論、半導體電性概念,使用有限單元分析軟體ANSYS®建立高功率發光二極體黏著於鋁製散熱鰭片之結構,搭配William與van de Pol等人提出自然熱對流理論帶入邊界條件進行模擬分析,並輔以順向偏壓法間接量測晶片接面溫度,驗證模擬結果的正確性,其結果顯示誤差皆在5%之內。此外,以此有限單元三維模型為基礎,進行新型發光二極體封裝結構(Chip-in-substrate type LED Package)的設計,模擬內部結構的熱傳物理行為及進行參數化分析。雖然新型發光二極體封裝結構在散熱效能上僅有微幅的進步,但可批量製造的特性,足以減少生產製造成本,增加此結構的競爭力。
    在光衰壽命測試(Life Test)中,本研究使用不同幾何形狀、材質的散熱鰭片作為發光二極體散熱之用,以產生不同的晶片接面溫度,進行光衰壽命測試。將實驗結果繪製成相對發光強度與時間之關係曲線圖,探討晶片接面溫度和光衰形式的關係,並找出造成光衰的破壞機制,以改進現有發光二極體之問題。
    在本研究中,以有限單元分析軟體ANSYS®模擬發光二極體之散熱特性,可快速的設計新型封裝結構並提出有效降低晶片接面溫度的方法,以提升發光二極體的發光強度與使用壽命,使發光二極體作為日常照明設備將指日可待。


    誌謝 i 中文摘要 iii 英文摘要 v 表目錄 x 圖目錄 xii 第一章 序論 1 1-1 簡介 1 1-2 研究動機 2 1-3 文獻回顧 4 1-4 研究目標 10 第二章 基礎理論 13 2-1 發光二極體發光原理 13 2-2 光學特性基礎理論 22 2-2-1 光通量 23 2-2-2 色溫 24 2-2-3 演色性 25 2-3 熱傳遞分析理論 26 2-3-1 熱傳遞行為 26 2-3-2 發光二極體封裝元件之熱傳遞分析 29 2-4 有限單元法理論 34 2-4-1 穩態熱傳導有限單元法基礎理論 35 第三章 發光二極體封裝結構散熱分析 38 3-1 發光二極體接面溫度量測試驗 39 3-1-1 順向偏壓法量測過程介紹 40 3-1-2 發光二極體接面溫度量測結果 46 3-2 散熱鰭片溫度量測試驗 52 3-3 發光二極體光電轉換效率量測試驗 54 3-4 發光二極體之有限單元熱分析模型建立 56 3-4-1 有限單元之熱傳分析模型建立 56 3-4-2 熱分析模擬結果 62 3-4-3 熱分析模擬結果與實驗之驗證 65 3-5 導熱雙面膠之效應 68 3-6 不完美接合之效應 71 3-6-1 不完美接合之熱傳模型建立 71 3-6-2 不完美接合之模擬結果 73 3-6-3 不完美接合模擬結果之驗證 74 第四章 新型發光二極體封裝結構 77 4-1 新型發光二極體封裝結構 78 4-2有限單元熱分析模型建立 82 4-3熱分析模擬結果 86 4-4新型發光二極體封裝結構參數化分析 89 4-4-1 光電轉換效率之效應 90 4-4-2 填充材料之效應 92 4-4-3銅散熱塊之厚度效應 95 4-4-4銅散熱塊之面積效應 97 4-4-5散熱鰭片之效應 99 第五章 發光二極體之光衰壽命測試 102 5-1 光衰壽命測試實驗 102 5-2 不同散熱鰭片之效應 108 5-3 發光二極體壽命測試之結果 111 5-4 失效模式分析 113 第六章 結論與未來展望 118 參考文獻 122 表目錄 表2-1 各種幾何形狀下所相對應待定係數值 31 表3-1校準量測實驗結果(第1顆LED) 49 表3-2量測三次B值之平均結果(第1顆LED) 50 表3-3 接面溫度量測實驗結果(鋁製Heat Sink_1) 52 表3-4 積分球量測實驗結果 56 表3-5 發光二極體之內部結構實際幾何尺寸 57 表3-6 有限單元熱分析模型之材料參數 59 表3-7 實驗與模擬之驗證 68 表4-1 Chip-in-Substrate封裝結構之內部幾何尺寸 82 表4-2 有限單元熱分析模型之材料參數 83 表5-1量測三次B值之平均結果(第2顆LED) 103 表5-2量測三次B值之平均結果(第3顆LED) 104 表5-3量測三次B值之平均結果(第4顆LED) 104 表5-4量測三次B值之平均結果(第5顆LED) 104 表5-5量測三次B值之平均結果(第6顆LED) 104 表5-6 接面溫度量測實驗結果(鋁製Heat Sink_2) 105 表5-7 接面溫度量測實驗結果(Curamik散熱片_1) 106 表5-8 接面溫度量測實驗結果(Curamik散熱片_2) 106 表5-9 接面溫度量測實驗結果(無散熱鰭片_1) 107 表5-10 接面溫度量測實驗結果(無散熱鰭片_2) 107 圖目錄 圖1-1 發光二極體接面溫度與相對發光強度關係圖 3 圖2-1 P-N接面結構示意圖 13 圖2-2 原子聚集形成晶體內能帶結構示意圖 15 圖2-3 能帶與材料特性示意圖 16 圖2-4 簡化之半導體晶體(a)矽與(b)砷化鎵的能量動量圖 17 圖2-5 各種發光二極體發光層材料之發光波段區域圖 18 圖2-6 (a)形成接面前之P型與N型半導體能階圖 20 (b)熱平衡時,空乏區內的電場與P-N接面能階圖 20 圖2-7 同質結構發光二極體載子的漂移方向與複合示意圖。 21 圖2-8 雙異質結構發光二極體載子的漂移方向與複合示意圖。 21 圖2-9 多重量子井結構能階示意圖。 22 圖2-10 人眼敏感度曲線 24 圖2-11 黑體輻射強度與溫度分佈關係圖 25 圖2-12 不同幾何形狀特徵長度示意圖 32 圖2-13 散熱鰭片特徵長度示意圖 33 圖3-1 二極體電流電壓特性曲線圖 41 圖3-2二極體電流電壓溫度特性曲線圖 (T1 > T2) 41 圖3-3 (a)靜態模式輸入電流曲線圖(b)輸出電壓曲線圖 44 圖3-4 (a)動態模式輸入電流曲線圖(b)輸出電壓曲線圖 45 圖3-5 市售1W高功率白光發光二極體 46 圖3-6 多溫段控制烘箱 47 圖3-7 Keithley 2400 SouceMeter® 48 圖3-8 脈衝電流波形示意圖 48 圖3-9 校準量測實驗結果 49 圖3-10 鋁製銀色散熱鰭片 50 圖3-11 3M® Tape 8805導熱雙面膠 51 圖3-12 接面溫度量測實驗之輸出電壓波形 52 圖3-13 市售高功率發光二極體黏著於散熱鰭片 53 圖3-14 散熱鰭片溫度量測結果 54 圖3-15 SphereOptics之積分球量測儀器 55 圖3-16 發光二極體之幾何尺寸 58 圖3-17 鋁製銀色散熱鰭片之幾何尺寸 58 圖3-18 發光二極體黏著於鋁製散熱鰭片之1/4對稱模型 60 圖3-19 1/4對稱模型之邊界條件示意圖 61 圖3-20 等效熱對流係數設定示意圖 62 圖3-21 熱分析模擬結果 (單位:°C) 63 圖3-22 發光二極體之細部溫度梯度分佈 (單位:°C) 64 圖3-23 散熱鰭片之細部溫度梯度分佈 (單位:°C) 64 圖3-24 實驗與模擬之驗證 68 圖3-25 無雙面膠結構之模擬結果 (單位:°C) 70 圖3-26 導熱雙面膠之效應比較 71 圖3-27 不完美接合模型之設定 73 圖3-28 不完美接合模型之模擬結果 (單位:°C) 74 圖3-29 不完美接合模型之驗證 75 圖4-1 發光二極體封裝技術的演進 79 圖4-2 Chip-in-Substrate type LED Package之結構示意圖 80 圖4-3 加工後之第一層基板 81 圖4-4 Chip-in-Substrate封裝結構之實品圖 81 圖4-5 Chip-in-Substrate LED Package之幾何尺寸 83 圖4-6 Chip-in-Substrate LED Package之1/4對稱模型 84 圖4-7 Chip-in-Substrate LED Package之邊界條件示意圖 85 圖4-8 等效熱對流係數設定示意圖 86 圖4-9 Chip-in-Substrate LED Package熱分析結果 (單位:°C) 87 圖4-10發光二極體之細部溫度梯度分佈 (單位:°C) 88 圖4-11 散熱鰭片之細部溫度梯度分佈 (單位:°C) 88 圖4-12 新型與傳統發光二極體比較 90 圖4-13 海茲定律 91 圖4-14 光電轉換效率之效應 92 圖4-15 填充材料之效應 94 圖4-16 6W時,填充材料效應之溫度梯度比較 95 圖4-17 銅散熱塊之厚度效應 96 圖4-18 銅散熱塊之面積效應 98 圖4-19 散熱鰭片之大小變化 100 圖4-20散熱鰭片之效應 100 圖5-1 Curamik生產之散熱片 103 圖5-2 不同材質、幾何形狀之散熱鰭片 110 圖5-3 實驗樣品之初始發光強度值 112 圖5-4 時間與相對發光強度之關係曲線圖 113 圖5-5 晶片接面溫度約85°C時,發光二極體之光譜圖 114 圖5-6晶片接面溫度約100°C時,發光二極體之光譜圖 115 圖5-7晶片接面溫度約120°C時,發光二極體之光譜圖 115

    [1] J. Garcia, M. A. Dalla-Costa, J. Cardesin, J. M. Alonso, and M. Rico-Secades, "Dimming of High-Brightness LEDs by Means of Luminous Flux Thermal Estimation," IEEE Transactions on Power Electronics, Vol. 24, NO. 4, pp. 1107-1114, April, 2009.
    [2] M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, "A Review on the Reliability of GaN-Based LEDs," IEEE Transactions on Device and Materials Reliability, Vol. 8, NO. 2, pp. 323-331, June, 2008.
    [3] M. Arik, C. A. Becker, S. E. Weaver, and J. Petroski, "Thermal Management of LEDs: Package to System," Third International Conference on Solid State Lighting, pp. 64-75, San Diego, CA, United States, August 5, 2003.
    [4] E. M. Sa, F. L. M. Antunes, and A. J. Perin, "Junction Temperature Estimation for High Power Light-Emitting Diodes," IEEE International Symposium on Industrial Electronics, pp. 3030-3035, Vigo, Spain, June 4-7, 2007.
    [5] C. Biber, "LED Light Emission as a Function of Thermal Conditions," Semiconductor Thermal Measurement and Management Symposium, pp. 180-184, San Jose, CA, United States, 16-20 March, 2008.
    [6] W. H. Chi, T. L. Chou, S. Y. Yang, C. N. Han, and K. N. Chiang, "Analysis of Thermal Performance for High Power Light Emitting Diodes Lighting Module," International Conference on Electronics Packaging, Kyoto, Japan, April 14-16, 2009
    [7] Y. X. Qin, D. Y. Lin, and S. Y. R. Hui, "A Simple Method for Comparative Study on the Thermal Performance of Light Emitting Diodes (LED) and Fluorescent Lamps," Applied Power Electronics Conference and Exposition, Washington, DC, United States, 15-19 February, 2009.
    [8] E. F. Schubert, Light-Emitting Diode, Cambridge University Press, New York, 2003.
    [9] S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, "Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias," IEEE Transactions on Device and Materials Reliability, Vol. 8, NO. 2, pp. 312-322, June, 2008.
    [10] N. Holonyak, "John Bardeen and the Point-Contact Transistor," Physics Today, Vol. 45, NO. 4, pp. 36-43, April, 1992.
    [11] S. Nakamura, T. Mukai, and M. Senoh, "High-Power GaN P-N Junction Blue-Light-Emitting Diodes," Japanese Journal of Applied Physics, Vol. 30, NO. 12A, pp. 1998-2001, December, 1991.
    [12] S. Nakamura and T. Mukai, "High-Quality InGaN Films Grown on GaN Films," Japanese Journal of Applied Physics, Vol. 31, NO. 10B, pp. 1457-1459, October, 1992.
    [13] S. Nakamura, "P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes," Japanese Journal of Applied Physics, Vol. 32, NO. 1A/B, pp. 8-11, January, 1993.
    [14] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures," Japanese Journal of Applied Physics, Vol. 34, NO. 7A, pp. 797-799, July, 1995.
    [15] S. Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers, Springer, Berlin, 1997.
    [16] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, "High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, NO. 2, pp. 339-345, March-April, 2002.
    [17] C. C. Tsai, Y. C. Hsu, S. B. Huang, Y. J. Lin, J. Wang, M. H. Chen, C. W. Lee, H. L. Hu, and W. H. Cheng, "Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes," IEEE Transactions on Device and Materials Reliability, Vol. 9, NO. 3, pp. 367-371, September, 2009.
    [18] L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso, and E. Zanoni, "Accelerated Life Test of High Brightness Light Emitting Diodes," IEEE Transactions on Device and Materials Reliability, Vol. 8, NO. 2, pp. 304-311, June, 2008.
    [19] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, "A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs," IEEE Transactions on Electron Devices, Vol. 57, NO.1, pp. 108-118, January, 2010.
    [20] Y. C. Hsu, Y. K. Lin, C. C. Tsai, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su, and W. H. Cheng, "Failure Mechanisms Associated with Lens Shape of High-Power LED Modules in Aging Test," IEEE Transactions on Electron Devices, Vol. 55, NO. 2, pp. 689-694, February, 2008.
    [21] S. Y. R. Hui and Y. X. Qin, "A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems," IEEE Transactions on Power Electronics, Vol. 24, NO.8, pp. 1967-1976, August, 2009.
    [22] J. C. Lin and K. N. Chiang, "Thermal / Mechanical Analysis of Novel C-TSOP Using Nonlinear FEM Model," Journal of Chinese Institute of Engineers, Vol. 24, NO. 4, pp. 453-462, 2001.
    [23] K. M. Chen, K. H. Houng, and K. N. Chiang, "Thermal Resistance Analysis and Validation of Flip Chip PBGA Packages," Microelectronics and Reliability, Vol. 46, NO. 2-4, pp. 440-448, February-April, 2006.
    [24] C. Y. Chou, C. J. Wu, H. P. Wei, M. C. Yew, C. C. Chiu, and K. N. Chiang, "Thermal Management on Hot Spot Elimination / Junction Temperature Reduction for High Power Density System in Package Structure," International Electronic Packaging Technical Conference and Exhibition, Vancouver, Canada, July 8-12, 2007.
    [25] Q. Cheng, "Thermal Management of High-Power White LED Package," International Conference on Electronic Packaging Technology, pp. 1-5, Shanghai, China, August 14-17, 2007.
    [26] M. Y. Tsai, C. H. Chen, and C. S. Kang, "Thermal analyses and measurements of low-Cost COP package for high-power LED," Electronic Components and Technology Conference, Lake Buena Vista, FL, 27-30 May, 2008.
    [27] F. Jiang, W. Liu, Y. Li, W. Fang, C. Mo, M. Zhou, and H. Liu, "Research on the Junction-Temperature Characteristic of GaN Light-Emitting Diodes on Si Substrate," Journal of Luminescence, Vol. 122-123, pp. 693-695, January-April, 2007.
    [28] T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, "Fabrication Process Simulation and Reliability Improvement of High-Brightness LEDs," Microelectronics Reliability, Vol. 49, NO. 9-11, pp. 1244-1249, September-November, 2009.
    [29] Y. Lai and N. S. Cordero, "Thermal Management of Bright LEDs for Automotive Applications," EuroSimE 2006, pp. 1-5, Piscataway, NJ, USA, April 24-26, 2006.
    [30] S. Jang and M. W. Shin, "Thermal Analysis of LED Arrays for Automotive Headlamp With a Novel Cooling System," IEEE Transactions on Device and Materials Reliability, Vol. 8, NO. 3, pp. 561-564, September, 2008.
    [31] L. Kim, J. H. Choi, S. H. Jang, and M. W. Shin, "Thermal Analysis of LED Array System with Heat Pipe," Thermochimica Acta, Vol. 455, NO. 1-2, pp. 21-25, April 1, 2007.
    [32] S. Murata and H. Nakada, "Adding a Heat Bypass Improves the Thermal Characteristics of a 50 µm Spaced 8-Beam Laser Diode Array," Journal of Applied Physics, Vol. 72, NO. 6, pp. 2514-2516, September 15, 1992.
    [33] E. Hong and N. Narendran, "A Method for Projecting Useful Life of LED Lighting Systems," 3rd International Conference on Solid State Lighting, pp. 93-99, San Diego, CA, United States, August 5, 2003
    [34] Y. Xi and E. F. Schubert, "Junction-Temperature Measurement in GaN Ultraviolet Light-Emitting Diodes Using Diode Forward Voltage Method," Applied Physics Letters, Vol. 85, NO. 12, pp. 2163-2165, September 20, 2004.
    [35] JEDEC Standard EIA/JESD51-1, "Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device)," 1995.
    [36] B. Siegal, "Practical Considerations in High Power LED Junction Temperature Measurements," International Conference on Electronics Manufacturing and Technology, Malaysia, November 8-10, 2007.
    [37] S. L. Kuo, C. K. Liu, M. J. Dai, C. K. Yu, H. C. Chien, and C. Y. Hsu, "Characteristics of Thermal Resistance for High Power LEDs," Electronics Packaging Technology Conference, Singapore, December 9-12, 2008.
    [38] W. H. Chi, T. L. Chou, C. N. Han, and K. N. Chiang, "Analysis of Thermal Performance of High Power Light Emitting Diodes Package," Electronics Packaging Technology Conference, pp. 533-538, Singapore, December 9-12, 2008.
    [39] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, "Solid-State Lighting : Failure Analysis of White LEDs " Journal of Crystal Growth, Vol. 268, NO. 3-4, pp. 449-456, August, 2004.
    [40] N. Narendran and Y. Gu, "Life of LED-Based White Light Sources," Journal of Display Technology, Vol. 1, NO. 1, pp. 167-171, September, 2005.
    [41] T. Yanagisawa and T. Kojima, "Long-term accelerated current operation of white light-emitting diodes," Journal of Luminescence, Vol. 114, NO.1, pp. 39-42, July, 2005.
    [42] 史光國,半導體發光二極體及固體照明,全華圖書,2005.
    [43] S. M. Sze and K. N. Kwok, Physics of Semiconductor Devices Wiley-Interscience, 2006.
    [44] M. Planck, The Theory of Heat Radiation, Dover Publications, New York, 1959.
    [45] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, NO. 2, pp. 310-320, March-April, 2002.
    [46] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley 5th, 2002.
    [47] William H. McAdams, "Heat Transmission," McGraw-Hill 3rd, New York, 1954.
    [48] G. N. Ellison, Thermal Computations for Electronic Equipment, Krieger Publishing Company, 1989.
    [49] D. W. van de Pol and J. K. Tierney, "Free Convection Heat Transfer from Vertical Fin-Arrays," IEEE Transactions on Parts, Hybrids and Packaging, Vol. 10, NO. 4, pp. 267-271, December, 1974.
    [50] S. Chhajed, Y. Xi, T. Gessmann, J.-Q. Xi, J. M. Shah, J. K. Kim, and E. F. Schubert, "Junction temperature in light-emitting diodes assessed by different methods," Light-Emitting Diodes: Research, Manufacturing, and Applications, San Jose, CA, United States, January 25, 2005.
    [51] 3M Thermally Conductive Adhesive Transfer Tapes 8805. 8810. 8815. 8820, 3M Technical Data, September, 2002.
    [52] M. C. Yew, C. F. Yu, M. Tsai, D. C. Hu, W. K. Yang, and K. N. Chiang, "A Study of Thermal Performance for the Panel Base Package (PBPTM) Technology," International Conference on Electronic Packaging Technology and International Symposium on High Density Packaging, Shanghai, China, July 28-31, 2008.
    [53] R. Haitz, "Haitz's Law," Nature Photonics, 2007.
    [54] W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, "Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition," Applied Physics Letters, Vol. 68, NO.5, pp. 667-669, January, 1996.
    [55] M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, "The activation of Mg in GaN by annealing with minority-carrier injection," Applied Physics Letters, Vol. 72, NO. 9, pp. 1101-1103, March, 1998.
    [56] F. Manyakhin, A. Kovalev, and A. E. Yunovich, "Aging Mechanisms of InGaN/AlGaN/GaN Light-emitting Diodes Operating at High Currents," MRS Internet Journal Nitride Semiconductor Research, Vol. 3, p. 53, December, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE