簡易檢索 / 詳目顯示

研究生: 吳宏益
Horng-Yi Wu
論文名稱: Ni/SiO2雙層催化劑結構合成側向成長單壁奈米碳管直徑分佈控制之研究
Lateral Growth of Single-Walled Carbon Nanotube Using Double-Layered Catalyst Pads with Controllable Diameter Distribution.
指導教授: 蔡春鴻
Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 單壁奈米碳管側向成長催化熱裂解化學氣相沉積法直徑控制
外文關鍵詞: SWNTs, Lateral Growth, Thermal-CVD, Diameter control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如我們所知,單壁奈米碳管會由於本身旋度的不同而有半導性與金屬性之分。是故成長出旋度受到控制且可大面積成長的碳管,以此進而得到高比例的半導性或金屬性的碳管,一直是碳管的製程研究人員所努力的目標,但是到目前為止,這個難題依舊存在。而H.J. Dai研究團隊曾經由理論預測,在相同製程環境下,若成長較多小直徑的單壁奈米碳管,將會優先形成較高比例的半導性碳管。此意味著藉由控制碳管直徑,將可達到控制半導性或金屬性碳管的比例。以H.J. Dai研究團隊的理論預測和本實驗室發展的以Ni/SiO2構成的雙層催化劑結構為基礎。本論文分別藉由改變SiO2的鍍率與厚度、催化劑Ni的厚度以及製程溫度去探討隨著這些參數的改變,其對於單壁奈米碳管直徑分佈的影響。實驗的結果顯示,隨著SiO2的鍍率與厚度的減低可以成長出較多小直徑比例的單壁奈米碳管(SWCNTs);且也發現太薄的催化劑厚度由於蒸鍍不均勻,將會不利於成長較多小直徑比例的SWCNTs。最後,我們也觀察到隨著製程溫度的降低,小直徑比例的SWCNTs會增加,且也會讓平均直徑變得較小。本研究主要目的在於找出成長出較多比例小直徑的SWCNTs最佳化參數,藉此希望在未來此雙層的催化劑結構可以直接被運用在碳管元件的製造上。


    致 謝 i 摘 要 v 目 錄 vii 圖 目 錄 ix 表 目 錄 xii 第一章 緒論 1 1-1 奈米碳管的結構 1 1-1-1鑽石(Diamond) 2 1-1-2 碳六十(C60) 2 1-1-3 石墨(Graphite) 3 1-1-4 奈米碳管(Carbon nanotube, CNT) 3 1-2 奈米碳管的材料特性 5 1-3 奈米碳管的製程 9 1-3-1電弧放電法(arc-discharge) 9 1-3-2雷射剝蝕法(laser ablation) 10 1-3-3化學氣相沉積法(chemical vapor deposition;CVD) 11 1-3-4 直接側向成長單壁奈米碳管 12 1-4 研究動機 14 第二章 文獻回顧 16 2-1 奈米碳管成長機制 16 2-1-1 氣-液-固相成長機制(vapor-liquid-solid growth mechanism, VLS growth mechanism) 18 2-1-2 固-液-固相成長機制(solid-liquid-solid growth mechanism, SLS growth mechanism) 20 2-1-3 底部成長(base-growth)與頂端成長(tip-growth) 21 2-2 奈米碳管直徑分佈控制 23 2-1-1 乾式催化劑(dry catalyst) 23 2-1-2 濕式催化劑(wet catalyst) 27 第三章 設備與製程 36 3-1 實驗設備 36 3-1-1 熱裂解化學氣相沉積法(thermal pyrolysis CVD,thermal-CVD)系統 36 3-1-2 電子槍蒸鍍儀(electron gun evaporation, E-gun evaporation) 39 3-1-3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 40 3-1-4 拉曼光譜儀(Micro-Raman Spectroscope, μ-Raman) 42 3-1-5 原子力顯微鏡(Atomic Force Microscopy,AFM) 45 3-2 實驗製程流程 46 3-3 試片的製備 47 3-3-1 黃光微影製程(photolithography) 47 3-3-2 催化劑蒸鍍與光阻剝離(lift-off) 48 3-4 CVD成長SWCNTs 49 第四章 實驗結果與討論 50 4-1 催化劑厚度對碳管直徑分佈的影響 50 4-1-1 SEM影像 51 4-1-2 Raman光譜分析結果 52 4-1-3 AFM量測統計SWCNTs直徑結果 55 4-1-4 結果與討論 58 4-2 催化劑雙層結構上層SiO2鍍率對碳管直徑分佈的影響 60 4-2-1 SEM影像 61 4-2-2 Raman光譜分析結果 64 4-2-3 AFM量測統計SWCNTs直徑結果 68 4-2-4 結果與討論 70 4-3 製程溫度對碳管直徑分佈的影響 73 4-3-1 SEM影像 74 4-3-2 Raman光譜分析結果 77 4-3-3 AFM量測統計SWCNTs直徑結果 85 4-3-4 結果與討論 89 第五章 總結 92 附錄 99 參考文獻 100

    [1]H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl, and R. E. Smalley, Nature 1985, 318, 162-163.
    [2]S. Iijima, Nature 1991, 354, 56-58.
    [3]A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillom, K. L. Klein, D. H. Lowndes, and M. L. Simpson et al., Journal of Applied Physics, 2005, 97, 41301.
    [4]D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605 (1993).
    [5]S. Iijima, and T. Ichihashi, Nature 363, 603 (1993).
    [6]Mauricio Terrones, Annu. Rev. Mater. Res., 2003 , 33, 419.
    [7]H. J. Dai, Surface Science, 2002, 500, 218.
    [8]M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, “Science of Fullerenes and Carbon Nanotubes”, Academic Press, San Diego, 1996.
    [9]M. M. J. Treacy, T. W. Ebbessen, and J. M. Gilson, Nature 1996, 381, 678-680.
    [10]B. I. Yakobson and R. E. Smalley, Am. Sci. 85,(1997) 324.
    [11]Yahachi Saito, and Sashiro Uemura, Carbon, 2000, 38, 169.
    [12]Alfredo M. Morales, and Charles M. Lieber, Science, 1998, 279, 209.
    [13]A. Thess, R. Lee, P. Nikolaev, H. J Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 1996, 273, 483-487
    [14]M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris (Eds.), Carbon nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin,2001
    [15]C. Chen, W. Chen, and Y. Zhang, Physica E: Low-dimensional Systems and Nanostructures, 2005, 28 ,121-127.
    [16]Yiming Li, David Mann, Marco Rolandi, Woong Kim, Ant Ural, Steven Hung, Ali Javey, Jien Cao, Dunwei Wang, Erhan Yenilmez, Qian Wang, James F. Gibbons, Yoshio Nishi, and Hongjie Dai, Nano Letters, 2004, 4, 317.
    [17]W.Y. Lee, C.H. Weng, Z.Y. Juang, J.F. Lai, K.C. Leou, and C.H. Tsai, Diamond and Related Materials, 2005, 14, 1852.
    [18]W.Y. Lee, H. Lin, C.H. Weng, K.C. Leou, and C.H. Tsai. submit to Applied Physics Letters.
    [19]Javey A., Guo J., Wang Q, Lundstrom M, and Dai H. Nature, 2003, 424, 654.
    [20]Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S. Cho K.-j., and Dai H., Science, 2000, 287, 622.
    [21]Tans S., Verschueren A., and Dekker C., Nature, 1998, 393, 49.
    [22]Krupke R., Hennrich F., von Loぴhneysen H., and Kappes M. M., Science, 2003, 301, 344.
    [23]Chen Z., Du X., Du M.-H., Rancken C. D., Cheng H.-P., and Rinzler A. G., Nano Letters, 2003, 3, 1245.
    [24]Chattopadhyay D., Galeska L., and Papadimitrakopoulos F., J. Am.Chem. Soc., 2003, 125, 3370.
    [25]Yiming Li, Shu Peng, David Mann, Jien Cao, Ryan Tu, K. J. Cho ,and Hongjie Dai, J. Phys. Chem. B, 2005, 109, 6968.
    [26]R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, J. Catal., 1972, 26, 51.
    [27]Yiming Li, Woong Kim, Yuegang Zhang, Marco Rolandi, Dunwei Wang, and Hongjie Dai, J. Phys. Chem. B, 2001, 105, 11424.
    [28]J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J. –C. Charlier, Physical Review Letters, 2001, 87, 275504.
    [29]A. Gorbunov, O. Jost, W. Pompe , and A. Graff, Carbon, 2002, 40, 113.
    [30]C. J. Lee and J. Park, Appl. Phys. Lett., 2000, 77, 3397.
    [31]S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, Chem. Phys. Lett., 1999, 315, 25.
    [32]Ali Javey and Hongjie Dai, J. AM. CHEM. SOC., 2005, 127, 11942-11943.
    [33]L. Delzeit, N. Chen, A. Cassell, R. Stevens, C. Nguyen and M. Meyyappan, Chemical Physics Letters 2001, 348-374.
    [34]Zhang R. Y., Amlani I., Baker J., Tresek J., Tsui R. K., and Fejes P. Nano Lett., 2003, 3(6); 731-735.
    [35]T. de los Arcos, Z. N. Wu, and P. Oelhafen, Chemical Physics Letters, 2003, 380, 419.
    [36]T. de los Arcos, M. G. Garnier, and P. Oelhafen, Carbon, 2004, 42, 187.
    [37]T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys, J. Phys. Chem. B, 2004, 108, 7728.
    [38]Y. Kobayashia, H. Nakashimaa, D. Takagib, and Y. Hommaa, Thin Solid Film, 2004, 464-465, 286.
    [39]Shuhei Inoue, and Yoshihiro Kikuchi, Chemical Physics Letters, 2005, 410, 209.
    [40]Shuhei Inoue, Takeshi Nakajima, and Yoshihiro Kikuchi, Chemical Physicsl Letters, 2005, 406, 184.
    [41]Masahiko ISHIDA, Hiroo HONGO, Fumiyuki NIHEY, and Yukinori OCHIAI, Japanese Journal of Applied Physics, 2004, 43, L1356.
    [42]Yo-Sep Min, Eun Ju Bae, Jong Bong Park, and Wanjun Park, Nanotechnology, 2006, 17, 116.
    [43]Hao Yu 1, Qiang Zhang, Qunfeng Zhang, Qixiang Wang, Guoqing Ning, Guohua Luo, and Fei Wei, Carbon, 2006, 44, 1706.
    [44]W.L. Wang, X.D. Bai, Zhi Xu, S. Liu, and E.G. Wang, Chemical Physics Letters, 2006, 419, 81.
    [45]Raman C. V. and Krishnan K. S., Nature,1928, 121, 501.
    [46]H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, Chemical Physics Letters, 1993, 202, 509.
    [47]A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, New Journal of Physics, 2003,5,139.1-139.17.
    [48]A. Brunet-Bruneau, J. Rivory, B. Rafin, J. Y. Robic, and P. Chaton, J. Appl. Phys., 1997, 82, 1330.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE