研究生: |
林萱 Hsuan Lin |
---|---|
論文名稱: |
溫度效應之於單根懸空單壁奈米碳管的拉曼譜線的影響 Temperature-dependent Raman features of the individual suspended single-walled carbon nanotubes |
指導教授: |
柳克強
Keh-Chyang Leou 蔡春鴻 Chuen-Horng Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 拉曼光譜 、單壁奈米碳管 、溫度效應 |
外文關鍵詞: | Raman spectrum, single-walled carbon nanotube, temperature-dependent effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微拉曼光譜學是一項檢驗單壁奈米碳管性質快速且不具破壞性的檢測工具。特別是共振拉曼光譜學更是應用在少量或是單根的單壁奈米碳管量測上的一項檢測利器。本論文中主要就是針對單根懸空的單壁奈米碳管進行由常溫到700 K之間,其拉曼訊號隨著溫度升高所產生的變化的研究。從實驗中,我們可以清楚的發現,當溫度增高時,單壁奈米碳管的拉曼特徵譜線會隨之而有往較低頻部分位移的情形發生。因為本論文主要就是注重在溫度變化上的分析,所以為了能夠較精準的得到試片表面的溫度,我們利用矽的單晶拉曼訊號來進行試片表面的溫度校準。溫度升高時,G+ band的頻率往低頻部份位移的原因主要來自於在昇溫的過程中,碳-碳鍵伸長導致鍵強的減弱,使得碳原子的振動頻率下降。溫度係數在此被我們用來作為估計各個不同的單壁奈米碳管振動模式的拉曼頻率位移量。我們發現不同結構(chirality)的單壁奈米碳管在溫度增加時,會具有不同的溫度係數。碳管中存在有許多不同的振動模式,而我們所觀察到的拉曼訊號來自於所有模式的加成結果。單壁奈米碳管的起始力常數、單位晶格大小、管徑以及捲曲時的角度(chiral angle)皆是影響溫度係數的因素。
In this study, resonance Raman spectroscopy (RRS) is employed to probe the structural information of CVD-synthesized single-walled carbon nanotubes (SWNTs) in ambient environment at various temperatures ranged from 300 K to 700 K. SWNTs are fabricated crossing as-formed deep trench on SiO2/Si to avoid the interferences from surrounding media such as the substrates. Furthermore, the enhanced RRS from suspended SWNTs (su-SWNTs) also helps to observe the slight changes of principal peaks as the temperature increased. We specially use the well-established Si Raman thermology to monitor and determine the accurate surface temperature of the measured su-SWNTs. The frequency of G+ peak is found downward shifted with the increase of temperatures due to the softening of C-C bonding strengths, where the changes are reversible during different temperature cycles. Temperature coefficients of the characteristics peaks are estimated respectively. The force constant of C-C bond is used to explain why the temperature coefficients of different chiralities are different. The initial force constant, the chiral angle, and the tube diameter all might be the causes of the different temperature coefficients of the individual suspended-SWNTs. However, there are too many phonon modes in various chiralities, so the temperature-dependent Raman feature is affected by other factors. The Raman feature would not be influenced by one factor only.
Reference
[1] R. Saito, G. Dresselhaus, M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes” Imperial College Press: London, 1998
[2] A. Javey, P. Qi, Q. Wang, H. Dai, proc. Natl. Acad. Sci. 101, 2004
[3] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano lett. 6, 2006
[4] M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications”, Springer, 2002
[5] E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Phys.Rev. Lett. 95, 2005
[6] Q. Zhang, D. Yang, S. Wang, S. Yoon, J. Ahn, Smart Mater. Struct. 15, 2006
[7] C. Fantini, A. Jorio, M. Souza, M. S. Strano, M.S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 93, 2004
[8] Z. P. Zhou, X. Y. Dou, L. J. Ci, L. Song, D. F. Liu, Y. Gao, J. X. Wang, L.F. Liu, W. Y. Zhou, S. H. Xie, J. Phys. Chem. B 110, 2005
[9] M. Z. Atashbar, S. Singamaneni, Appl. Phys. Lett. 86, 2005
[10] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, P. M. Ajayan, Phys. Rev. B 66, 2002
[11] R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 94, 2005
[12] S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham, Phys. Rev. Lett. 93, 2004
[13] A. G. Souza Filho, N. Kobayashi, J. Jiang, A. Gruneis, R. Saito, S. B. Cronin, J. Mendes Filho, Ge. G. Samsonidze, M. S. Dresselhaus, Phys. Rev. Lett. 95, 2005
[14] S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham, Phys. Rev. B 72, 2005
[15] S. Reich, C. Thomsen, J Maultzsch “Carbon Nanotubes Basic concepts and physical properties” 2004
[16] T. S. Jespersem, MS. Thesis “Raman Scattering in Carbon Nanotubes”2003
[17] A. Jorio, R. Saito, G. Dresselhaus, M. S. Dresselhaus, Phil. Trans. R. Soc. Lond. A 362, 2004
[18] J. C. Meyer, M. Paillet, T. Michel, A. More´ac, A. Neumann, G. S. Duesberg, S. Roth, J. L. Sauvajol, Phys. Rev. Lett. 95, 2005
[19] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 2005
[20] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, R. Saito, Phys. Rev. B 65, 2002
[21] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuk, Y. Ohtsuka, Y. Achiba, Synth. Metals 103, 1999
[22] M.S. Dresselhaus , G. Dresselhaus , A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2002
[23] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, P. M. Ajayan, Phys. Rev. B 66, 2002
[24] Z. Zhou, X. Y. Dou, L. J. Ci, L. Song, D. F. Liu, Y. Gao, J. X. Wang, L.F. Liu, W. Y. Zhou, S. H. Xie, J. Phys. Chem. B 110, 2005
[25] L. Ci, Z. Zhou, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, S. Xie, Appl. Phys. Lett. 82, 2003
[26] W. Lee, C. Weng, Z. Juang, J. Lai, K. Leou, C. Tsai, Diamond Relat. Mater. 14, 2005
[27] R. Mark. L. T. Abel, E. O. Wright, G. Samuel, P. K. William, IEEE Semi-therm Sym. 21 2005
[28] J. Maultzsch, H. Telg, S. Reich, C. Thomesen, Phys. Rev. B 72, 2005
[29] M. R. Abel, T. L. Wright, E. O. Sunden, S. Graham, W. P. King, IEEE Semi-therm Sym. 21 2005
[30] C. Kittel, “Introduction to Colid State Physics 7th edition” Wiley, 1996
[31] http://www.photon.t.u-tokyo.ac.jp/~maruyama/kataura/kataura.html
[32] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresslhaus, M. S. Dresslhaus, Phys. Rev. B 64, 2001