研究生: |
温姸婷 Wen, Yen-Ting |
---|---|
論文名稱: |
靜態隨機存取記憶體的飛航輻射單粒子翻轉效應評估:以台灣重要國際航線為例 Single Event Upset Assessment for Static Random-Access Memory Onboard the Aircraft in Popular Flight Routes from Taiwan |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
林威廷
Lin, Uei-Tyng 趙得勝 Chao, Der-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 宇宙射線 、航空電子元件 、單粒子翻轉效應 、單粒子翻轉截面 、NTHU飛航劑量評估程式 |
外文關鍵詞: | Cosmic ray, Avionics, Single event upset, SEU cross-section, NTHU Flight Dose Calculator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
宇宙射線可能引發電子元件的單粒子翻轉效應,其發生的機率隨高度上升伴隨宇宙射線變強而增加。電子元件因宇宙射線引發錯誤或失效必須納入飛航安全分析與防錯設計的考量之中,因此如何正確評估輻射引發之電子元件的單粒子翻轉效應相當重要,特別是針對宇宙射線在飛航高度造成的複雜輻射場環境。有鑑於此,本研究收集一系列不同靜態隨機存取記憶體(SRAM)對於輻射照射引發之單粒子翻轉效應的截面,搭配實驗室自行開發之飛航劑量評估程式,有系統地分析這些SRAM位於台灣常見國際航線飛機上發生單粒子翻轉效應的機率,並探討其發生機率與相關參數的關係。
評估單粒子翻轉效應需要航線的累積能譜以及SRAM的單粒子翻轉截面,本研究利用NTHU飛航劑量評估程式(NTHU Flight Dose Calculator,NTHU-FDC)取得不同航線的累積能譜,並且廣泛蒐集文獻中從1997年起相關的研究結果,從中得到55個不同的SRAM其由中子、質子照射引發單粒子翻轉截面之量測數據。假設若將上述55個不同廠牌與類型的SRAM擺放於台灣常見國際航線的飛機上,我們針對2018年7月份台灣飛往世界各地的十條重要航線(阿姆斯特丹、紐約、法蘭克福、洛杉磯、雪梨、杜拜、新加坡、東京、北京及香港),分別評估其單粒子翻轉發生的機率,並依據評估結果探討其發生機率與SRAM的儲存容量與通道長度之關係,以及不同航線的垂直截止剛度和飛行高度與單粒子翻轉率之關聯性。本研究產生了多種SRAM置於台灣飛機上的單粒子翻轉率數據,相關評估方法與成果應可提供後續飛機電子元件系統安全與防錯設計相關分析的參考。
Cosmic-ray-induced radiation field at flight altitudes causes single event upset to avionics, and the probability of its occurrence increases as the flight altitude rises as the cosmic rays become stronger. Errors or failures of avionics caused by cosmic rays must be taken into consideration of flight system safety analysis. Therefore, how to correctly evaluate the single event upset of avionics caused by radiation is very important, especially for the environment of complex radiation field caused by cosmic rays at flight altitude. In view of this, this study collected a series of cross-sections of different static random access memory (SRAM) on the single event upset induced by radiation, and used the NTHU Flight Dose Calculator (NTHU-FDC) to systematically analyze the probability of single event upset on these SRAM on popular flight routes in Taiwan, and explore the relationship between the probability of occurrence and related parameters.
Estimation of the single event upset requires the cumulative spectrum of the flight and the cross-section of each SRAM. In this study, NTHU-FDC was used to obtain the cumulative spectrum of different aviation routes. Also extensively collect relevant research results in the literature since 1997, and obtained the measurement data of 55 SRAM’s cross-sections induced by the radiation. Suppose that if the above 55 different brands and types of SRAM are placed on aircraft on popular flight routes in Taiwan, evaluate the probability of single event upset for the ten important aviation routes from Taiwan to the rest of the world in July 2018. Based on the evaluation results, the relationship between single event upset rate and the device size and the channel length of SRAM, as well as the correlation between the vertical cutoff rigidity and flight altitude of different aviation routes and the single event upset rate are discussed. This study provided a variety of SRAM single event upset rate data placed on Taiwan’s aircraft, the relevant evaluation methods and results should provide a reference for subsequent analysis of aircraft avionics system safety and mitigation techniques.
[1] V. F. Hess, "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten," Physik Zeitschr, vol. 23, pp. 1084-1091, 1912.
[2] (2020). Victor F. Hess Biographical. Available: https://www.nobelprize.org/prizes/physics/1936/hess/biographical/
[3] ICRP, "Radiological Protection from Cosmic Radiation in Aviation. ICRP Publication 132," Ann. ICRP, vol. 45, 2016.
[4] L. H. Mutuel, "Single event effects mitigation techniques report, Department of Transportation/Federal Aviation Administration," TC, vol. 15, p. 47O, 2016.
[5] K. A. LaBel, "Radiation Effects on Electronics 101: Simple Concepts and New Challenges," 2004.
[6] R. Edwards, C. Dyer, and E. Normand, "Technical standard for atmospheric radiation single event effects, (SEE) on avionics electronics," in 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No.04TH8774), 2004, pp. 1-5.
[7] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor technologies," IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 305-316, 2005.
[8] J. Harris. (2018). A Quick Overview of Radiation Effects - Single Event Effects. Available: https://www.planetanalog.com/a-quick-overview-of-radiation-effects-single-event-effects/#
[9] Wekipedia. (2020). n-type MOSFET. Available: https://zh.wikipedia.org/wiki/%E5%9C%BA%E6%95%88%E5%BA%94%E7%AE%A1
[10] I. Zaczyk, "Impact of Cosmic Radiation on Aviation Reliability and Safety," vol. 11 No.4, pp. 217-223, 2013.
[11] A. C. M. Prado, C. A. Federico, E. C. F. Pereira Junior, and O. L. Goncalez, "Effects of cosmic radiation on devices and embedded systems in aircrafts," in INAC 2013: international nuclear atlantic conference, Brazil, 2013.
[12] Australian Transport Safety Bureau, "ATSB Transport Safety Report, Aviation Occurrence Investigation, AO-2008-070," 2008.
[13] F. Wang and V. D. Agrawal, "Single Event Upset: An Embedded Tutorial," in 21st International Conference on VLSI Design (VLSID 2008), 2008, pp. 429-434.
[14] Wikipedia. (2020). Triple modular redundancy. Available: https://en.wikipedia.org/wiki/Triple_modular_redundancy
[15] Wikipedia. (2020). Failure mode and effects analysis. Available: https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis
[16] Wikipedia. (2020). Moore's Law. Available: https://en.wikipedia.org/wiki/Moore%27s_law
[17] K. Johansson, P. Dyreklev, O. Granbom, M. C. Calver, S. Fourtine, and O. Feuillatre, "In-flight and ground testing of single event upset sensitivity in static RAMs," IEEE Transactions on Nuclear Science, vol. 45, pp. 1628-1632, 1998.
[18] M. S. Gordon, P. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang, J. M. Clem, et al., "Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground," IEEE Transactions on Nuclear Science, vol. 51, pp. 3427-3434, 2004.
[19] Z. Y. Yang, P. C. Lai, and R. J. Sheu, "Update and New Features of NTHU Flight Dose Calculator: A Tool for Estimating Aviation Route Doses and Cumulative Spectra of Cosmic Rays in Atmosphere," IEEE Transactions on Nuclear Science, vol. 66, pp. 1931-1941, 2019.
[20] 楊子毅, "新版宇宙射線飛航劑量評估程式的開發與應用," 博士論文, 國立清華大學, 2020.
[21] C. S. Dyer, S. N. Clucas, C. Sanderson, A. D. Frydland, and R. T. Green, "An experimental study of single-event effects induced in commercial SRAMs by neutrons and protons from thermal energies to 500 MeV," IEEE Transactions on Nuclear Science, vol. 51, pp. 2817-2824, 2004.
[22] J. Baggio, V. Ferlet-Cavrois, H. Duarte, and O. Flament, "Analysis of proton/neutron SEU sensitivity of commercial SRAMs-application to the terrestrial environment test method," IEEE transactions on nuclear science, vol. 51, pp. 3420-3426, 2004.
[23] T. Nakamura, M. Baba, E. Ibe, Y. Yahagi, and H. Kameyama, Terrestrial Neutron-induced Soft Errors in Advanced Memory Devices, 2008.
[24] E. Normand, "Extensions of the burst generation rate method for wider application to proton/neutron-induced single event effects," IEEE Transactions on Nuclear Science, vol. 45, pp. 2904-2914, 1998.
[25] J. Baggio, V. Ferlet-Cavrois, D. Lambert, P. Paillet, F. Wrobel, K. Hirose, et al., "Neutron and proton-induced single event upsets in advanced commercial fully depleted SOI SRAMs," IEEE transactions on nuclear science, vol. 52, pp. 2319-2325, 2005.
[26] D. Lambert, J. Baggio, G. Hubert, P. Paillet, S. Girard, V. Ferlet-Cavrois, et al., "Analysis of quasi-monoenergetic neutron and proton SEU cross sections for terrestrial applications," IEEE transactions on nuclear science, vol. 53, pp. 1890-1896, 2006.
[27] J. Baggio, D. Lambert, V. Ferlet-Cavrois, P. Paillet, C. Marcandella, and O. Duhamel, "Single event upsets induced by 1–10 MeV neutrons in static-RAMs using mono-energetic neutron sources," IEEE Transactions on Nuclear Science, vol. 54, pp. 2149-2155, 2007.
[28] P. Roche, G. Gasiot, S. Uznanski, J.-M. Daveau, J. Torras-Flaquer, S. Clerc, et al., "A commercial 65nm CMOS technology for space applications: Heavy ion, proton and gamma test results and modeling," in 2009 European Conference on Radiation and Its Effects on Components and Systems, 2009, pp. 456-464.
[29] Wikipedia. (2020). Dynamic random-access memory. Available: https://en.wikipedia.org/wiki/Dynamic_random-access_memory
[30] Wikipedia. (2020). Static random-access memory. Available: https://en.wikipedia.org/wiki/Static_random-access_memory
[31] Wikipedia. (2020). Silicon on insulator. Available: https://en.wikipedia.org/wiki/Silicon_on_insulator
[32] P. Olejarz, K. Park, S. Macnaughton, M. Dokmeci, and S. Sonkusale, "0.5 µW Sub-Threshold Operational Transconductance Amplifiers Using 0.15 µm Fully Depleted Silicon-on-Insulator (FDSOI) Process," Journal of Low Power Electronics and Applications, vol. 2, pp. 155-167, 12/01 2012.
[33] SOI Industry Consortium, "Fully Depleted (FD) vs. Partially Depleted (PD) SOI," 2008.
[34] M. L. Alles, R. D. Schrimpf, R. A. Reed, L. W. Massengill, R. A. Weller, M. H. Mendenhall, et al., "Radiation hardness of FDSOI and FinFET technologies," in IEEE 2011 International SOI Conference, 2011, pp. 1-2.
[35] Wikipedia. (2020). MOSFET. Available: https://zh.wikipedia.org/wiki/%E9%87%91%E5%B1%AC%E6%B0%A7%E5%8C%96%E7%89%A9%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%A0%B4%E6%95%88%E9%9B%BB%E6%99%B6%E9%AB%94
[36] D. F. Smart and M. A. Shea, "A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft," Advances in Space Research, vol. 36, pp. 2012-2020, 2005/01/01/ 2005.
[37] ICRU, "Reference Data for the Validation of Doses from Cosmic Radiation Exposure of Aircraft Crew, ICRU Report 84," Journal of the ICRU, vol. 10, 2010.