簡易檢索 / 詳目顯示

研究生: 潘科穎
Pan, Ko-Ying
論文名稱: 低維金屬氧化物奈米結構之表面修飾在光電與光觸媒特性之研究
Studies on Low-dimensional Metal Oxide Nanostructures and Their Surface Modification on Optoelectric and Photocatalystic Properties
指導教授: 施漢章
吳志明
口試委員: 施漢章
吳志明
莊東漢
薛富盛
林景崎
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 155
中文關鍵詞: 二氧化錫/氧化鋅核殼奈米線氧化銦及氧化銦錫奈米結構氧化矽/銀之奈米核殼顆粒表面電漿子光觸媒奈米銀鑲嵌於二氧化矽複合結構退火抗菌陰極激發光譜儀
外文關鍵詞: core-shell SnO2-ZnO nanowire, Tin-doped indium oxide nanostructure, core-shelled silica-silver nanoparticle, surface plasmon resonance, Photocatalyst, Silver-embedded aluminum/silica nanoparticles, Annealing, Antibacterial, Cathodeluminescence
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究中,包含:(一) 二氧化錫/氧化鋅核殼奈米線之合成與光電特性研究,和氧化銦及氧化銦錫奈米結構之合成與其光電特性應用之研究;(二) 二氧化矽/銀之奈米核殼顆粒之合成與其表面電漿子共振引發之光觸媒催化反應研究和奈米銀鑲嵌於二氧化矽複合結構之合成,及其退火與抗菌應用之研究。
    在二氧化錫/氧化鋅之核殼奈米線之合成過程中,採用熱蒸鍍法在氧化鋁基板上製造出密集之二氧化錫奈米線。接著以原子層沉積法(atomic layer deposition, ALD),奈米級氧化鋅附合於二氧化錫奈米線上,以獲得二氧化錫/氧化鋅核殼結構奈米線。材料分析可以確認其成分與結構,電性量測及紫外光分析,顯示本材料具備優秀的紫外光探測能力。
    在氧化銦及氧化銦錫奈米結構合成,採用熱蒸鍍法在氧化矽基板上,不同的製程參數,分別沉積出氧化銦奈米棒、奈米塔及氧化銦錫奈米棒。材料分析證明其成分與結構,且更進一步做電性測試及陰極激發光譜儀(Catho- doluminescence, CL) 之分析,發現其可應用於有機發光二極體之元件。
    在二氧化矽/銀之奈米核殼顆粒製作過程,先利用Stöber法製作出奈米級二氧化矽球,接著以種子成長法來合成二氧化矽/銀之奈米核殼結構粒子,並用葡萄糖當還原劑來控制奈米銀之幾何形狀。紫外光-可見光吸收光譜特性檢測發現:紅位移現象與特徵吸收峰的寬度皆與銀顆粒尺寸成正比的關係,且當粒子結構外型呈橢圓形時,雙特徵吸收峰的現象,隨即產生。這特殊的表面電漿子共振吸收的現象也與其後之光分解效率試驗相互呼應,共振程度愈高者其效率也愈佳。
    在奈米級銀鑲嵌於二氧化矽複合型材料結構之合成、退火及抗菌應用之研究中,先採用溶凝膠法(Sol-gel method)製作二氧化矽奈米顆粒,其後再做退火熱處理。經由化學穩定性及抗菌測試對一系列的產物中,可證明其可有效用於抗菌相關之產業。


    There are two major parts in this thesis, including Part I: the fabrications, materials characteristics and optoelectronic applications of nanostructures of core-shell SnO2-ZnO, tin-doped indium oxide, and Part II: the syntheses, materials features and optoelectronic applications of nanoparticles of core-shelled silica-silver and silver-embedded aluminum/silica.
    In the Part I, as for core-shell SnO2-ZnO nanowires, in advance, tin dioxide nanowires were synthesized by thermal evaporation. Then, depositions of ZnO nanolayer on SnO2 nanowires have been successfully synthesized by atomic layer deposition (ALD). These results demonstrated that the SnO2-ZnO core-shell nanowires have potential application as UV photodetectors with high photon-sensing properties.
    In terms of nanostructures of tin-doped indium oxide, indium oxide (In2O3) nanorods, nanotowers and tin-doped (Sn:In=1:100) indium oxide (ITO) nanorods have been successfully fabricated by thermal evaporation, respectively. Judging from cathodeluminescence (CL) spectra of these three nanoproducts, it is clear that tin-doped (Sn:In=1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt that ITO nanorods obtains the most effective performance among these three nanoproducts, and this also means doping elements in original nanomaterials would be the best way to enhance physical properties. Additionally, this study would be beneficial to the applications of In2O3 nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices, especially in organic light-emitting diode (OLED).
    In the Part II, as for core-shelled silica-silver nanoparticles, abundant core-shelled silica-silver nanospheres with uniform diameter and morphology were successfully synthesized by Stöber and seed-mediated method, in sequence. Moreover, by the different additions of glucose as the reducing agent, the silver nanoparticles were deposited on silica spheres by redox reaction, and the dimensions of samples were well controlled. The surface plasmon resonance absorption band shifted toward infra-red region and became broader gradually during the dimensions of silver nanoparticles were increased in the growth range. Meanwhile, this intriguing result shows that two absorption characteristics peaks are observed in the spectra while the morphologies of nanoparticles are becoming oval-shaped. The amazing data imply that using core-shelled silica-silver nanospheres efficiently enhances the degradation of the organic pollutants under solar energy, which means the core-shelled silica-silver nanospheres is not only a cost-effective route but an energy-saving way to our planet.
    In terms of silver-embedded aluminum/silica nanoparticles, in order to improve the time-consumption issue of the above method, substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by a modified sol-gel technique, a one-spot method. The chemical durable examinations and antibacterial tests of each sample were also carried out for the confirmation of usages in practical. As a result of above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils.

    Abstract I Acknowledge IV Contents V List of Tables IX Figure Captions X Chapter 1 Introduction 1 1.1 SnO2-ZnO core-shell nanowires 1 1.2 Thermally evaporated tin-doped indium oxide nanostructures 2 1.3 Core-shelled silica-silver nanospheres 4 1.4 Silver-embedded aluminum/silica nanoparticles 6 1.5 Motivation 8 Chapter 2 Literature Review 10 2.1 Brief description of nanomaterials and nanotechnology 10 2.2 Physics of Nanomaterials 14 2.2.1 Surface effects 16 2.2.2 Quantum confinement effects 18 2.2.3 Quantum tunneling effects 21 2.3 Brief description of tin oxide, zinc oxide and indium oxide nanostructures 24 2.3.1 Crystal structure and physical characteristics of tin oxide 24 2.3.2 Crystal structure and physical characteristics of zinc oxide 25 2.3.3 Crystal structure and physical characteristics of indium oxide 26 2.4 Preparation and growth mechanism of tin oxide, zinc oxide and indium oxide nanostructures 27 2.4.1 Thermal chemical vapor deposition (TCVD) 28 2.4.2 Plasma-enhance chemical vapor deposition (PECVD) 29 2.4.3 Hydrothermal technique 30 2.4.4 Growth mechanisms of one dimensional nanostructures 32 2.4.4.1 Vapor-liquid-solid (VLS) mechanism 32 2.4.4.2 Vapor-solid (VS) mechanism 34 2.4.4.3 Solution-liquid-solid (SLS) mechanism 34 2.5 Brief description of silicon oxide and silver 37 2.5.1 Crystal and physical characteristics of silicon oxide 37 2.5.2 Crystal and physical characteristics of silver 38 2.6 Preparation of core-shelled nanoparticles 40 2.6.1 Brief description of core-shell nanoparticles 40 2.6.2 Synthesis of silica nanospheres by Stöber method 42 2.6.3 Deposition of silver nanoparticles on silica nanoparticles by seed-growth method 43 2.6.4 Surface plasmon resonance of metal nanoparticles 45 2.6.5 Dipolar coupling model of two-particle system 46 2.6.6 Optical properties of core-shell nanoparticles 51 Chapter 3 Experimental 53 3.1 Fabrication process of SnO2-ZnO core-shell and tin-doped indium oxide nanostructures 53 3.1.1 Fabrication of SnO2-ZnO core-shell nanowires 53 3.1.2 Fabrication of tin-doped indium oxide nanostructures 54 3.2 Synthesis process of core-shelled silica-silver and silver-embedded aluminum/silica nanoparticles 55 3.2.1 Synthesis process of core-shelled silica-silver nanoparticle 55 3.2.2 Synthesis process of silver-embedded aluminum/silica nanoparticles 57 3.3 The facilities for characterization and analysis 59 3.3.1 Field emission scanning electron microscopy (FESEM) 59 3.3.2 X-ray diffraction (XRD) 60 3.3.3 High-resolution transmission electron microscopy (HRTEM) 61 3.3.4 Energy dispersion spectrometer (EDS) 62 3.3.5 X-ray photoelectron spectrum (XPS) 62 3.3.6 Raman spectroscopy 63 3.3.7 Cathodoluminescence (CL) 64 Chapter 4 Results and Discussion 65 4.1 Analyses and examinations of SnO2-ZnO core-shell nanowires 65 4.1.1 The facilities for analyses and examinations of SnO2-ZnO core-shell nanowires 65 4.1.2 XRD analysis and SEM images of SnO2-ZnO core-shell nanowires 65 4.1.3 HRTEM images of SnO2-ZnO core-shell nanowires 68 4.1.4 XPS analysis of SnO2-ZnO core-shell nanowires 71 4.1.5 Optoelectronic properties of SnO2-ZnO core-shell nanowires 73 4.2 Analyses and examinations of nanostructures of tin-doped indium oxide 77 4.2.1 The facilities of analyses and examinations for nanostructures of tin-doped indium oxide 77 4.2.2 SEM images and XRD analysis of nanostructures of tin-doped indium oxide 78 4.2.3 TEM and HRTEM images of nanostructures of tin-doped indium oxide 81 4.2.4 XPS analysis of nanostructures of tin-doped indium oxide 87 4.2.5 Optoelectronic properties of nanostructures of tin-doped indium oxide 93 4.3 Analyses and examinations of core-shelled silica-silver nanoparticles 98 4.3.1 The instruments of analyses and examinations for core-shelled silica-silver nanoparticles 98 4.3.2 Structure and morphology of core-shelled silica-silver nanoparticles 99 4.3.3 XRD pattern and HRTEM image of SiO2@Ag nanospheres 101 4.3.4 XPS analysis of SiO2@Ag nanospheres 103 4.3.5 UV-visible spectrum of SiO2@Ag nanospheres 106 4.3.6 Photocatalytic degradation of SiO2@Ag nanospheres 109 4.4 Analysis and examinations of silver-embedded aluminum/silica nanoparticles 111 4.4.1 The instruments of analyses and examinations for silver-embedded aluminum/silica nanoparticles 111 4.4.2 Morphology of silver-embedded aluminum/silica nanospheres 113 4.4.3 XPS analysis of silver-embedded aluminum/silica nanospheres 118 4.4.4 UV-visible spectrum of silver-embedded on aluminum/silica nanospheres 124 4.4.5 Chemical durable analysis of silver-embedded aluminum/silica nanospheres 126 4.4.6 Antibacterial analysis of silver-embedded aluminum/silica nanospheres 129 Chapter 5 Conclusions 132 References 134 Publication list 154 List of Tables Table 4.1 Synthesis conditions and morphology characteristics of In2O3 and ITO nanostructures 82 Table 4.2 Atomic of In2O3 nanorods, nanotowers and ITO nanorods by XPS 88 Table 4.3 The XPS results of Ag0 and Ag+ by deconvolution of Ag(3d5/2) curve . 120 Table 4.4 The results of antibacterial examinations. 131 Figure Captions Figure 2.1 The scale of nanoworld 12 Figure 2.2 Scheme of the nanotechnology 13 Figure 2.3 Classification of Nanomaterials (a) 0D spheres and clusters, (b) 1D nanofibers, wires, and rods, (c) 2D films, plates, and networks, (d) 3D nanomaterials 15 Figure 2.4 The percentage of surface atoms / total atoms 16 Figure 2.5 The schematic illustration of photocatalyst TiO2 18 Figure 2.6 Density of states in a bulk materials, a quantum well (2-D nanomaterial), a quantum wire (1-D nanomaterial), and a quantum dot (0-D nanomaterial) 21 Figure 2.7 A particle tunneling through a barrier 23 Figure 2.8 Sketch of the tetragonal rutile structure of tin dioxide includes the blue balls and red balls, which represent the tin and oxygen atoms, respectively 24 Figure 2.9 Wurtzite structure of ZnO 25 Figure 2.10 The unit cell model of In2O3 26 Figure 2.11 Illustration of thermal evaporation furnace working system 29 Figure 2.12 Schematic illustration of PECVD system 30 Figure 2.13 The schematic illustration of the autoclave for hydrothermal technique 31 Figure 2.14 Schematic illustration of this mechanism (a) Growth of a nanowire via VLS mechanism; (b) The binary phase diagram between Au and Ge with an indication of compositional zones responsible for alloying, nucleation and growth 33 Figure 2.15 Growth mechanisms. (A) VLS mechanism: the flux droplet is a metal such as Au, Ag, Pd, Pt, Ni, or Cu, and E1 and E2 are elements of the crystal phase dissolved in the metallic flux droplet. The whiskers on the left and right are early and late in the VLS growth process, respectively. (B) SLS mechanism: the flux droplet is in, and M and E are elements of the III-V semiconductor dissolved in the flux droplet. The crystalline fiber and attached flux droplet are suspended in the reaction solution 36 Figure 2.16 Illustration of the tetrahedral structure of silica. The blue ball represents a silicon atom; the coffee ball represents an oxygen atom. 37 Figure 2.17 Crystal lattice of metallic silver. The blue balls represent silver atoms 38 Figure 2.18 UV-vis spectrum of silver nanoparticles 39 Figure 2.19 Variety of core shell particles. (a) Surface-modified core particles anchored with shell particles; (b) More shell particles reduced onto core to form a complete shell; (c) Smooth coating of dielectric core with shell; (d) Encapsulation of very small particles with dielectric material; (e) Embedding number of small particles inside a single dielectric particle; (f) Quantum bubble; (g) Multishell particle. 41 Figure 2.20 SEM image of colloidal silica particles 43 Figure 2.21 Fabrication of SiO2-Ag core-shelled nanoparticles by seed-growth. method. 44 Figure 2.22 (a) Normalized extinction spectra of spherical Ag, Au and Cu nanoparticles. (b) Spatial distribution of the SPR-induced enhancement of electric field at the SPR peak wavelength (420 nm), from a FDTD simulation of a 75 nm Ag nanocube 46 Figure 2. 23 The sketch of the dipole-dipole coupling between metallic nanoparticles 46 Figure 2.24 UV-Vis absorption spectra of different nanosized silver particles 52 Figure 2.25 Variation in SPR band with shell thickness 52 Figure 3.1 FE-SEM JEOL JSM6500F 59 Figure 3.2 Shimadzu X-ray Diffractometer XRD-6000 60 Figure 3.3 High-Resolution Transmission Electron Microscopy 61 Figure 3.4 X-ray Photoelectron Spectrum 63 Figure 3.5 Micro-Raman system 64 Figure 3.6 JEOL-JSM-7001F 64 Figure 4.1 (a) XRD pattern (b) SEM image of SnO2-ZnO core-shell nanowires (ALD:200 cycles) 67 Figure 4.2 (a),(b) Low-magnification TEM, and (c) HRTEM image of a SnO2-ZnO core-shell nanowires (ALD:200 cycles) 70 Figure 4.3 The XPS (a) Zn 2p (b) O 1S spectrum 72 Figure 4.4 The I-V curve of SnO2-ZnO core-shell nanowires (ALD: 200cycles) and pure SnO2 nanowires 75 Figure 4.5 Photoresponse curves of (a) pure SnO2 nanowires and (b) SnO2-ZnO core-shell nanowires-based photodetectors 76 Figure 4.6. (a) SEM images of In2O2 nanorods. Inset: Enlarged image. (b) SEM images of In2O3 nanotowers. Inset: Enlarged image. (c) SEM images of ITO nanorods. Inset: Enlarged image. 80 Figure 4.7 XRD patterns of In2O3 nanorods, nanotowers and ITO nanorods. 80 Figure 4.8 (a) Low-magnification TEM image of In2O3 nanorods. (b) HRTEM image of In2O3 nanorods. Lower right inset: SAD pattern. (c) TEM-EDS analysis at spectrum1 ( The tip of In2O3 nanorods). 84 Figure 4.9 (a) Low-magnification TEM image of In2O3 nanortowers. (b) HRTEM image of In2O3 nanotowers. Lower right inset: SAD pattern. (c) Low-magnification TEM image of ITO nanorods. (d) HRTEM image of ITO nanorods. Lower right inset: SAD pattern 86 Figure 4.10 XPS spectra of In2O3 nanorods: (a) O 1s and (b) In 3d spectrum. XPS spectra of In2O3 nanotowers: (c) O 1s and (d) In 3d spectrum. XPS spectra of ITO nanorods: (e) O 1s, (f) In 3d and (g) Sn 3d spectrum 92 Figure 4.11 CL spectra: (a) In2O3 nanotowers, (b) In2O3 nanorods and (c) ITO nanorods. In CL signal of (a) and (b), two peaks concentrated at 599 nm and 641 nm. In CL signal of (c), two peaks concentrated at 566 nm and 628 nm. Two arrows mean the revelation of blue-shift. 96 Figure 4.12 Measured I-V curves of (a) ITO nanorods, (b) In2O3 nanotowers and (c) In2O3 nanorods obtained. Lower middle inset: the schematic picture of measurement system. 97 Figure 4.13 (a) SEM image of silica nanospheres, (b) TEM image of SiO2@Ag NSs (SA0), (c) TEM image of SiO2@Ag NSs with 1-cycle redox reaction(SA1), (d) TEM image of SiO2@Ag NSs with 2-cycle redox reaction(SA2). Upper right sides photos show the individual nanospheres TEM images taken of SA0, SA1 and SA2, respectively. 100 Figure 4.14 XRD pattern for SiO2@Ag NPs. 102 Figure 4.15 HRTEM image of SiO2@Ag NPs 102 Figure 4.16 The XPS of (a) survey scan of Sn2+-sensitized SiO2 nanospheres (b) survey scan of SiO2@Ag NSs (c) Si 2p of SiO2@Ag NSs (d) O 1s of SiO2@Ag NSs (e) Ag 3d of SiO2@Ag NSs (f) Sn 3d of SiO2@Ag NSs. 105 Figure 4.17 UV-visible absorption spectra of three kinds of SiO2@Ag NSs. (SA0, SA1 and SA2) 108 Figure 4.18 C/ C0 versus irradiation time plots for MB photodegradation 110 Figure 4.19 SEM image of silver-embedded silica nanospheres 115 Figure 4.20 The illustration of fabricating silver-embedded on aluminum/silica nanospheres and annealing 116 Figure 4.21 TEM images of (a) as-prepared sample; (b) SAS-250; (c) SAS-400; (d) SAS-600; (e) SAS-800; (f) SAS-1000: all scale bars are 100 nm 116 Figure 4.22 Enlarged TEM images of (a) as-prepared sample; (b) SAS-250; (c) SAS-400; (d) SAS-600; (e) SAS-800; (f) SAS-1000: all scale bars are 20 nm 117 Figure 4.23 XP spectra of silver-embedded silica nanospheres. (a) Survey scan, (b) Si 2p, (c) O 1s and (d) Al 2p. 121 Figure 4.24 The mechanisms of silver-embedded on aluminum/silica nanospheres at different annealing temperatures 122 Fig. 4.25 XP spectra of Ag 3d3/2 and 3d5/2 in silver-embedded silica nanospheres. (a) As-prepared, (b) SAS-250, (c) SAS-400, (d) SAS-600, (e) SAS-800, (f) SAS-1000 123 Figure 4.26 UV-visible spectra of silver-embedded silica nanospheres 125 Figure 4.27 Al, Si and Ag ions released rate of silver-embedded silica nanospheres in water. 128 Figure 4.28 Antibacterial examinations for (a) placebo film (100% PE), (b) film of As-prepared sample, (c) film of SAS-400, (d) film of SAS-600, (e) film of SAS-800 and (f) film of SAS-1000. 131

    References
    1. Q. Wan, E. N. Dattoli, and W. Lu, “Transparent metallic Sb-doped SnO2 nanowires,” Appl. Phys. Lett., vol. 90, no. 22, pp. 222107-1-3, 2007.
    2. S. L. Chou, J. Z. Wang, C. Zhong, M.M. Rahmana, H. K. Liu, S. X. Doua, “A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries,” Electrochim. Acta., vol. 54, no. 28, pp.7519-7524, 2009.
    3. P. S. Lee, Y. H. Lin, Y. S. Chang, and J. M. Wu, and H. C. Shih, “Growth and characterization of thermally evaporated ATO nanowires,” Thin Solid Films, vol. 519, no. 5, pp.1749-1754, 2010.
    4. Y. H. Lin, Y. C. Hsueh, C. C. Wang, J. M. Wu, T. P. Perng and H. C. Shih, “Enhancing the photon-sensing properties of ZnO nanowires by atomic layer deposition of platinum,” Electrochem. Solid-State Lett., vol.13, no.12, pp. K93-K95, 2010.
    5. Q. Kuang, Z. Y. Jiang, Z. X. Xie, S. C. Lin, Z. W. Lin, S. Y. Xie, R. B. Huang and L. S. Zheng, “Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2,” J. Am. Chem. Soc., vol. 127, no. 33, pp. 11777-11784, 2005.
    6. Y. H. Lin, Y. C. Hsueh, P. S. Lee, C. C. Wang, J. R. Chen, J. M. Wu, T. P. Perng and H. C. Shih, “Preparation of Pt/SnO2 core-shell nanowires with enhanced ethanol gas- and photon-sensing properties,” J. Electrochem. Soc., vol. 157, no. 9, pp. K206-K210, 2010.
    7. A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensors,” Adv. Mater., vol. 15, no. 12, pp. 997-1000, 2003.
    8. V. Kumar, S. Sen, K. P. Muthe et al., “Copper doped SnO2 nanowires as highly sensitive H2S gas sensors,” Sens. Actuat. B-Chem., vol. 138, no. 2, pp. 587-590, 2009.
    9. D. Wang, X. Chu and M. Gong, “Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method,” Sens. Actuat. B-Chem., vol. 117, no. 1, pp. 183-187, 2006.
    10. X. Wang, J. Zhang and Z. Zhu, “Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance,” Appl. Surf. Sci., vol. 252, no. 6, pp. 2404-2411, 2006.
    11. I. S. Hwang, S. J. Kim, J. K. Choi et al., “Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires,” Sens. Actuat. B-Chem., vol. 148, no. 2, pp. 595-600, 2010
    12. M. Shahid, I. Shakir, S. J. Yang and D. J. Kang, “Facile synthesis of core-shell SnO2/ V2O5 nanowires and their efficient photocatalytic property,” Mater. Chem. Phys., vol. 124, no. 1, pp. 619-622, 2010.
    13. Y. Yu and P. Dutta, “Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications,” Sens. Actuat. B-Chem., vol. 157, no. 2, pp. 444-449, 2011.
    14. V. Kumar, S. Sen, K. P. Muthe et al., “Copper doped SnO2 nanowires as highly sensitive H2S gas sensors,” Sens. Actuat. B-Chem., vol. 138, no. 2, pp. 587-590, 2009.
    15. Y. H. Lin, Y. C. Hsueh, C. C. Wang, J. M. Wu, T. P. Perng and H. C. Shih, “Enhancing the photon-sensing properties of ZnO nanowires by atomic layer deposition of platinum,” Electrochem. Solid-State Lett., vol. 13, no. 12, pp. K93-K95, 2010.
    16. L.W. Chang, T.Y. Lu, Y.L. Chen, J.W. Yeh and Han C. Shih, “Effect of the doped
    nitrogen on the optical properties of ß-Ga2O3 nanowires,” Mater. Lett., vol. 65, issue 14, pp. 2281-2283, 2011.
    17. P. Wu, Q. Li, C.X. Zhao, D.L. Zhang, L.F. Chi and Tan Xiao, “Synthesis and photoluminescence property of indium oxide nanowires,” Appl. Surf. Sci., vol. 255, issue 5, part 2, pp. 3201-3204, 2008.
    18. Y. L. Zhao, H. X. Lu, X. J. Yu, B. B. Fan, D. L. Chen et al., “Synthesis and performance of core–shell structured ZnO/In2O3 composites in situ growth,” Appl. Surf. Sci., vol. 251, issue 24, pp. 10634-10638, 2011.
    19. P. Erhart, A. Klein, R. G. Egdell and K. Albe, “Band structure of indium oxide: Indirect versus direct band gap,” Phys. Rev. B, vol. 75, issue 15, pp. 153205 (4 pages), 2007.
    20. N. Singh, T. Zhang and P. S. Lee, “The temperature-controlled growth of In2O3 nanowires, nonotowers and ultra-long layered nanorods,” Nanotechnology, vol. 20, no. 19, pp. 195605 (6 pages), 2009.
    21. J Gao, R Chen, D H Li, L Jiang, J C Ye, X C Ma, X D Chen, Q H Xiong, H D Sun and T Wu, “UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires,” Nanotechnology, vol. 22, no. 19, pp. 195706 (10 pages), 2011.
    22. Y. J. Huang, K. Yu, Z. Xu and Z. Q. Zhu, “Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display,” Physica E, vol. 43, issue 8, pp. 1502-1508, 2011.
    23. G. Cheng, E. Stern, S. Guthrie, M.A. Reed, R. Klie, Y. Hao, G. Meng and L. Zhang, “Indium oxide nanostructures,” Appl. Phy. A, vol. 85, no. 3, pp. 233-240, 2006.
    24. Z. Li and Yuris Dzenis, “Highly efficient rapid ethanol sensing based on Co-doped In2O3 nanowires,” Talanta, vol. 85, issue 1, pp.82-85, 2011
    25. N. Singh, C. Yan and P. S. Lee, ”Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors,” Sens. Actuator B-Chem., vol. 150, issue 1, pp. 19-24, 2010.
    26. S. Y. Li, C. Y. Lee, P. Lin and T. Y. Tseng, ”Low temperatures synthesized Sn doped indium oxide nanowires,” Nanotechnology, vol. 16, no. 4, pp. 451-457, 2005.
    27. A. J. Chiquito, A. J.C. Lanfredi and E. R. Leite, ”Electron-electron scattering in Sn doped In2O3 nanowires,” Physica E, vol. 40, issue 3, pp. 449-451, 2008.
    28. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, ”Indium phosphide nanowires as building block for nanoscale electronic and optoelectronic devices,” Nature, vol. 409, issue 6816, pp. 66-69, 2001.
    29. M. Epifani, E. Comini, J. Arbiol, E. Pellicer , P. Siciliano, G. Faglia and J. R. Morante, ”Nanocrystals as very active interfaces: Ultrasensitive room-temperature ozone sensors with In2O3 nanocrystals prepared by a low-temperature sol-gel process in a coordinating environment,” J. Phys. Chem. C, vol. 111, issue 37, pp. 13967-13971, 2007.
    30. J. Yang, C. K. Lin, Z. L. Wang and J. Lin, ”In(OH)3 and In2O3 nanorod bundles and spheres: Microemulsion-mediated hydrothermal synthesis and luminescence properties,” Inorg. Chem., vol. 45, issue 22, pp. 8973-8979, 2006.
    31. J. Yang, C. X. Li, Z. W. Quan, D. Y. Kong, X. M. Zhang, P. P. Yang and J. Lin, ”One-step aqueous solvothermal synthesis of In2O3 nanocrystals,” Cryst. Growth Des., vol. 8, no. 2, pp. 695-699, 2008.
    32. H. F. Yang, Q. H. Shi, B. Z. Tian, Q. Y. Lu, F. Gao, S. H. Xie, J. Fan, C. Z. Yu, B. Tu and D. Y. Zhao, ”One-step nanocasting syhthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks,” J. Am. Chem. Soc., vol. 125, issue 16, pp. 4724-4725, 2003.
    33. Z. R. Dai, Z. W. Pan and Z. L. Wang, ”Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater., vol. 13, issue 1, pp. 9-24, 2003.
    34. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou, Diameter-controlled Growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater., vol. 15 no. 2, pp. 143–146, 2003.
    35. N. S. Lewis, “Toward cost-effective solar energy use,” Science, vol. 315, no. 5813 pp. 798-801, 2007.
    36. Q. Wang, J. Li, Y. Bai, X. Lu, Y. Ding, S. Yin, H. Huang, H. Ma, F. Wang and B. Su, “Photodegradation of textile dye Rhodamine B over a novel biopolymer–metal complex wool-Pd/CdS photocatalysts under visible light irradiation,” J. Photochem. Photobiol. B, vol. 126, pp. 47-54, 2013.
    37. A. Fujishima and K. Honda, “Photolysis-decomposition of water at the surface of an irradiated semiconductor,” Nature, vol. 238, pp. 37-38, 1972.
    38. N. Kislov, J. Lahiri, H. Verma, D.Y. Goswami, E. Stefanakos and M. Batzill, “Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO: Orientation Dependence of Photoactivity and Photostability of ZnO,” Langmuir, vol. 25, no. 5 pp. 3310-3315, 2009.
    39. L.Y. Shi, C.Z. Li, H.C. Gu and D.Y. Fang, “Morphology and properties of ultrafine SnO2–TiO2 coupled semiconductor particles,” Mater. Chem. Phys., vol. 62, pp. 62-67, 2000.
    40. T. Sreethawong, S. Ngamsinlapasathian and S. Yoshikawa, “Synthesis of crystalline mesoporous-assembled ZrO2 nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity,” Chem. Eng. J., vol. 228, pp. 256-262, 2013.
    41. S. K. Park, K. D. Kim and H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles,” Colloids Surf. A, vol. 197, pp.7-17, 2002.
    42. A. Manassero, M. L. Satuf and O. M. Alfano, “Evaluation of UV and visible light activity of TiO2 catalysts for water remediation,” Chem. Eng. J., vol. 225, pp.378-386, 2013.
    43. S. Phadtare, A. Kumar, V.P. Vinod, C. Dash, D.V. Palaskar, M. Rpa, P.G. Shukla, S. Sivaram and M. Sastry, “Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates,” Chem. Mater., vol. 15, pp.1944-1949, 2003.
    44. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci., vol. 17, pp.153-320, 1984.
    45. K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg and R. P. Van Duyne, “Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc., vol. 125, pp. 588-593, 2003.
    46. H.A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater., vol. 9, pp. 205-213, 2010.
    47. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan , F. C. Loh, J. F. Deng and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone),” Langmuir, vol.12, pp. 909-912, 1996.
    48. I M. Joni, R. Balgis, T. Ogi, T. Iwaki and K. Okuyuma, “Surface functionalization for dispersing and stabilizing hexagonal boron nitride nanoparticle by bead milling,” Colloids Surf. A, vol.388, pp. 49-58, 2011.
    49. G. N. Xu, X. L. Qiao, X. L. Qiu and J. G. Chen, “Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction,” Colloids Surf. A, vol.320, pp. 222-226, 2008.
    50. Y. Kobayashi, Verónica S. M. and Luis M. L. M., “Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating,” Chem. Mater., vol.13, pp.1630-1633, 2001.
    51. S. Schaefers, L. Rast and A. Stanishevsky, “Electroless silver plating on spin-coated silver nanoparticle seed layers,” Mater. Lett., vol. 60, pp. 706-709, 2006.
    52. S. Linic, P. Christopher and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nature Mater., vol.10, pp. 911-921, 2011.
    53. K. H. Chen, Y. C. Pu, K. D. Chang, Y. F. Liang, C. M. Liu, J. W. Yeh, H. C. Shih and Y. J. Hsu, “Ag-Nanoparticle-Decorated SiO2 Nanospheres Exhibiting Remarkable Plasmon-Mediated Photocatalytic Properties,” J. Phys. Chem. C, vol. 116, pp. 19039-19045, 2012.
    54. M. Zhu, G Qian, G. Ding, Z. Wang and M. Wang, “Plasma resonance of silver nanoparticles deposited on the surface of submicron silica spheres,” Mater. Chem. Phys., vol. 96, pp.489-493, 2006.
    55. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys., vol.25, pp. 377-445, 1908.
    56. W. Stöber, A. Fink and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interf. Sci., vol. 26, pp. 62-69, 1968.
    57. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Hermann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B- Enviro., vol. 31, pp. 145-157, 2001.
    58. N. Ninan, S. Thomas, Y. Grohens, “Zeolites incorporated polymeric gel beads - Promising drug carriers,” Mater. Lett., vol. 118, pp. 12–16, 2014.
    59. N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, S. Thomas, “Synthesis and characterisation of gelatin/zeolite porous scaffold,” Eur. Polym. J., vol. 49, pp. 2433-2445, 2013.
    60. M.K. Kang, S.K. Moon, S.B. Lee, K. M. Kim, Y. K. Lee, K. N. Kim, “Antibacterial effects and cytocompatibility of titanium anodized in sodium chloride, calcium acetate, and ß-glycerol phosphate disodium salt pentahydrate mixed solution,” Thin Solid Films, vol. 517, pp. 5390-5393, 2009.
    61. A. Oyane, Y. Yokoyamo, M. Uchida, A. Ito, “The formation of an antibacterial agent- apatite composite coating on a polymer surface using a metastable calcium phosphate solution,” Biomaterials, vol. 27, pp. 3295-3303, 2006.
    62. D. Sharma, J. Rajput, B.S. Kaith, M. Kaur, S. Sharma, “Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties,” Thin Solid Films, vol. 519, pp. 1224-1229, 2010.
    63. R.J. Dutta, B.P. Nenavathu, S. Talukda, “Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles,” Colloid Surf. B-Biointerfaces, vol. 114, pp. 218-224, 2014.
    64. Q.L. Cheng, C.Z. Li, V. Pavlinek, P. Saha , H.B. Wang, “Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties,” Appl. Surf. Sci., vol. 252, pp. 4154-4160, 2006.
    65. X.H. Yao, X.G. Zhang, H.B. Wu, L.H. Tian, Y. Ma, B. Tang, “ Microstructure and antibacterial properties of Cu-doped TiO2coatingon titanium by micro-arc oxidation,” Appl. Surf. Sci., vol. 292, pp. 944-947, 2014.
    66. F. Petronella, S. Diomede, E. Fanizza, G. Mascolo, T. Sibillano, A. Agostiano, M.L. Curri, R. Comparelli, “ Photodegradation of nalidixic acid assisted by TiO2 nanorods/Ag nanoparticles based catalyst,” Chemosphere, vol. 91, pp. 941-947, 2013.
    67. C.J. Zhao, B. Feng, Y.T. Li, J. Tan, X. Lu, J. Weng, “ Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light,” Appl. Surf. Sci., vol. 280, pp. 8-14, 2013.
    68. S.H. Stelzig, Christin Menneking, M.S. Hoffmann, K. Eisele, S. Barcikowski, M. Klapper, K. Mullen, “Compatibilization of laser generated antibacterial Ag- and Cu-nanoparticles for perfluorinated implant materials,” Eur. Polym. J., vol. 47, pp. 662-667, 2011.
    69. A. F. de Fariaa, D. S. T. Martineza, S. M. M. Meirab, A. C. M. de Moraesa, A., A. Brandellib, A. G. S. Filhoc, O. L. Alvesa, “ Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets,” Colloid Surf. B-Biointerfaces, vol. 113, pp. 115-124, 2014.
    70. M. Guzman, J. Dille, S. Godet, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomedicine, vol. 8, pp. 37-45, 2012.
    71. N.C. Zhang, Y.H. Gao, H. Zhang, X.A. Feng, H.H. Cai, Y.L. Liu: Preparation and characterization of core–shell structure of SiO2@Cu antibacterial agent. Colloid Surf. B-Biointerfaces 2010, 81:537-543.
    72. K. Xu, J.X. Wang, X.L. Kang, J.F. Chen, “Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration,” Mater. Lett., vol. 63, pp. 31–33, 2009.
    73. N.C. Zhang, F. Xue, X. Yu, H.H. Zhou, E.Y. Ding, “Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity,” J. Alloys Compd., vol. 550, pp. 209-215, 2013.
    74. S. Kalele, S. W. Gosavi, J. Urban, S. K. Kulkarni, “Nanoshell particles: synthesis, properties and applications,” Curr. Sci., vol. 91, pp. 1038-1052, 2006.
    75. K. Nischala, T. N. Rao, N. Hebalkar, “Silica-silver core-shell particles for antibacterial textile application. Colloid Surf. B-Biointerfaces, vol. 82, pp. 203-208, 2011.
    76. R. D. Badly, W. T. Ford, F. J. MacEnroe, and R. A. Assink, “Surface modification of colloidal silica,” Langmuir, vol. 6, pp. 792–801, 1990
    77. Z.W. Deng, M. Chen, L.M. Wu, “Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties,” J. Phys. Chem. C, vol. 111, pp. 11692-11698, 2007.
    78. Van Blaaderen, A. and Vrij, A. J., “Synthesis and characterization of monodisperse colloidal organo-silica spheres,” J. Colloid Interface Sci., vol. 156, pp. 1–18, 1993.
    79. F. Caruso, R. A. Caruso, H. Möhwald, “ Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science, vol. 282, pp. 1111-1114, 1998.
    80. T. Cassagneau, F. Caruso, “ Contiguous silver nanoparticle coatings on dielectric spheres,” Adv. Mater., vol. 14, pp. 732-736, 2002.
    81. C.P. Poole. Jr. and F.J. Owens,” Introduction of nanotechnology,” Willy Interscience, p.114.
    82. C. Y. Pan, Z. J. Zhang, X. Su, Y. Zhao, and J. G. Liu, “Characterization of Fe Nonorods Grown Directly from Submicron-Size Iron Grains by Thermal Evaporation”, Phys. Rev. B, vol. 70, pp. 233404-233411, 2004.
    83. A. J. Zarur, and J. Y. Ying, “Reverse Microemulsion Synthesis of Nanostructured Complex Oxides for Catalytic Combustion,” Nature, vol.403, pp. 65-67, 2000.
    84. L.H. Liang, C.M. Shen, Xi-Ping Chen, Wu-Ming Liu and Hong-Jun Gao, “The size-dependent phonon frequency of semiconductor nanocrystals,” J. Phys.: Condens. Matter., vol.16, pp. 267-272, 2004.
    85. T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, vol. 46, pp. 15578-15581, 1992.
    86. H.S. Nalwa,”Handbook of nanostructure materials and techmology,” vol.2, Acdamic press, New York, 2000.
    87. R. Feynman, “There’s plenty of room at the bottom,” Engineering and Science, 23, 1960.
    88. Created by the Office of Basic Energy Sciences in the U. S. Department of Energy.
    89. R.W. Siegel et al. “Nanostructure and science and technology,” Kluwer Academic Publishers, London, p.5, 1999.
    90. R. Zsigmondy, J. Wiley and N. Y. Sons, “Colloids and the Ultramicroscope: A Manual Of Colloid Chemistry And Ultramicroscopy (1914),” Kessinger Publishing, LLC , 2010.
    91. Lerner and Trigg, “Encyclopedia of Physics 2nd Ed”, VCH Publishers, pp.1308, 1991.
    92. R. S. Wagner, and W. C. Ellis, “Vapor-Solid-Growth Mechanism of Single Crystal Growth,” Appl. Phys. Lett., vol. 4, pp. 89, 1964.
    93. B. Lewis, “in Crystal Growth, Pergamon, Oxford, pp. 23-63, 1980.
    94. G. P. Xao, Z. L. Wang, “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process,” J Phys Chem. B vol. 108, pp. 7534-7437, 2004.
    95. T. J. Trentler, K. M. Hickman, S. C. Goel, A.M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, vol. 270, pp. 1791-1794, 2006.
    96. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., vol. 75, pp. 3129-3131 ,1999.
    97. K. Huang, Q. Pan, F. Yang, S. Ni and D. He, “Synthesis and Field-emission Properties of the Tungsten Oxide Nanowire Array,” Physica E, vol. 39, pp. 219-222, 2007.
    98. S. Sen, P. Kanitkar, A. Sharma, KP Muthe, A. Rath, SK Deshpande, Manmeet Kaur, RC Aiyer, SK Gupta, JV Yakhmi, “Growth of SnO2/WO2.72 Nanowires Hierarchical Heterostructure and their Application as Chemical Sensor,” Sens. Actuat. B-Chem., vol. 147, pp. 453-460, 2010.
    99. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Huang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Commun., vol. 109, pp. 677-682, 1999.
    100. D. Loss, “Quantum phenomena in nanotechnology,” Nanotechnology, vol. 20, pp. 430205, 2009.
    101. W. A. de Heer, A. Chatelaine, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, pp. 1179-1180, 1995.
    102. http://www.csc.fi/english/pages/mika/publications/Ogandothesis.pdf
    103. Alain Nouailhat, “An Introduction to Nanoscience and Nanotechnology,” 2008.
    104. Lerner and Trigg, “Encyclopedia of Physics second edition,” VCH press, 1991.
    105. D. A. Popescu, J. M. Herrmann, A. Ensuque and F. Bozon-Verdiraz, “Nanosized tin dioxide: Spectroscopic (UV–VIS, NIR, EPR) and electrical conductivity studies,” Phys. Chem. Chem. Phys., vol. 3, pp. 2522-2530, 2001.
    106. J. H. Ding, T. J. Mcavoy, R. E. Cavicchi and S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sens. Actuat. B-Chem., vol. 77, pp. 597-613, 2001.
    107. http://www.webelements.com/compounds/tin/tin_oxide.html
    108. B. Meyer, D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,” Phys. Rev. B, vol. 67, pp. 035403-1-11, 2003.
    109. http://www.webelements.com/compounds/indium/diindium_trioxide.html
    110. G. Cheng, E. Stern, S. Guthrie, M. Reed, R. Klie, Y. Hao, G. Meng, L. Zhang, “Indium oxide nanostructures,” Appl. Phys. A, vol. 85, pp. 233-240, 2006.
    111. http://www.indium.com/inorganic-compounds/indium-compounds/
    112. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp.56-58, 1991.
    113. Z. R. Dai, Z. W. Pan and Z. L. Wnag, “Novel Nanostructures of Functional Oxide Synthesized by Thermal Evaporation,” Adv. Funct. Mater., vol. 13, pp. 9-24, 2003.
    114. K. Y. Pan, Y. H. Lin, P. S. Lee, J. M. Wu and H. C. Shih, “Synthesis of SnO2-ZnO Core-Shell Nanowires and Their Optoelectronic Properties,” J. Nanomater., vol. 2012, Article ID 279245, 2012.
    115. K. Y. Pan, L. D. Lin, L. W. Chang and H. C. Shih, “Studies on the Optoelectronic Properties of the Thermal Evaporated Tin-doped Indium Oxide,” Appl. Surf. Sci., vol. 273, pp. 12-18, 2013.
    116. C. Z. Wang, T. W. Chen, C. C. Lin, W. J. Hsieh, K. L. Chang and H. C. Shih, “Synthesis, characterization and cathodoluminescence of nanostructured SnO2 using microwave plasma enhanced CVD,” J. Phys. D, vol. 40, no. 9, pp. 2787-2791, 2007.
    117. H. Huang, O. K. Tan, Y. C. Lee, J. Guo and T. White, “In situ growth of SnO2 nanorods by plasma treatment of SnO2 thin films,” Nanotechnology, vol. 17, no. 15 pp. 3668-3672, 2006.
    118. M. J. Alam and D. C. Cameron, “Investigation of annealing effects on sol–gel deposited indium tin oxide, thin films in different atmospheres,” Thin Solid Film, vol. 420-421, pp. 76-82, 2002.
    119. D. F. Zhang, L. D. Sun, J. L. Yin and C. H. Yan, “Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods,” Adv. Mater., vol. 15, issue 12, pp. 1022-1025, 2003.
    120. T. Y. Zhai, H. M. Liu, H. Q. Li, X. S. Fang, M. Y. Liao, L. Li, H. S. Zhou, Y. Koide, Y. Bando and D. Golberg, “Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties,” Adv. Mater., vol. 22, pp. 2547–2552, 2010.
    121. F. Zhou, X. Zhao, C. Yuan and L. Li, “Vanadium Pentoxide Nanowires: Hydrothermal Synthesis, Formation Mechanism, and Phase Control Parameters”, Cryst. Growth Des., vol. 8, pp. 723–727, 2008.
    122. Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 nanorods by thermal CVD at various gas flow rates and substrate temperatures,” Electrochem. Solid St., vol. 14, pp. K40-K42, 2011.
    123. Y. T. Hsieh, M. W. Huang, C. C. Chang, U. S. Chen, and H. C. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation,” Thin Solid Films, vol. 519, issue 5, pp. 1668-1672, 2010.
    124. Y. G. Zhang, N. L. Wang, R. R. He, J. Liu, X. Z. Zhang and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth, vol. 233, issue 4, pp. 803-808, 2001.
    125. L. W. Chang, M. W. Huang, C. T. Li and H. C. Shih, “Controllable two-step growth and photoluminescence of waterweed-like SnO2 nanowires,” Appl. Surf. Sci., vol. 279, pp. 167-170, 2013.
    126. X. Xiang, C. B. Cao, Y. J. Guo and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts,” Chem. Phys. Lett., vol. 378, pp. 660-664, 2003.
    127. J .M. Ting and R. M. Liu, “Carbon nanowires with new microstructures,” Carbon, vol. 41, pp. 601-603, 2003.
    128. X. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong and X. B. Liao “Silicon nanowires grown on a pre-annealed Si substrate,” J. Cryst. Growth, vol. 247, pp. 13-16, 2003.
    129. L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu and H. C. Shih, “The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition,” Thin solid Film, vol. 423, pp. 27-32, 2003.
    130. http://engr.nmsu.edu/~jcecil/current-initiatives/NanoTechnology_Research/SCR
    EAM.htm
    131. Rosario Pignatello, “Biomaterials Science and Engineering,” InTech publisher, 2011.
    132. C. P. Cho, “On heat treatment of nanostructured AlQ3 – Structural transformation, field emission and photoluminescence,” Doctor Thesis, National Tsing Hua University, Hsinchu, 2006.
    133. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., vol. 15, issue 5, pp. 353-389, 2003.
    134. Y. H. Lin, “Preparation, Characterization and Performance of the Functional Tin Oxide and Zinc Oxide Nanostructures,” Doctor Thesis, National Tsing Hua University, Hsinchu, 2010.
    135. M. W. Huang, “Synthesis, Characterization and Application of Low Dimensional Nanostructures of Metal Compounds,” Doctor Thesis, National Chung Hsing University, Taichung, 2012.
    136. http://www.green-planet-solar-energy.com/silicon-element-facts.html
    137. K. Nischala, Tata N. Rao, Neha Hebalkar, “Silica–silver core–shell particles for antibacterial textile application,” Colloid. Surface. B, vol. 82, pp. 203-208, 2011.
    138. I. Sondi, D. V Goia and E. Matijević, “Preparation of highly concentrated stable dispersions of uniform silver nanoparticles,” J. Colloid. Interface. Sci., vol. 260, issue 1, pp. 75-81, 2003.
    139. http://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structure
    140. A. Orbaek, M. Phillips, M. McHale and A. Barron, “Silver Nanoparticles: A Case Study in Cutting Edge Research,” Open access online.
    141. E. Matijevic, “Monodispersed colloids: art and science,” Langmuir, vol. 2, pp.12-20, 1986.
    142. D. V. Goia, “Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions,” J. Mater. Chem., vol. 14, issue 4, pp. 451-458, 2004.
    143. E. Matijevic, “Monodispersed metal (hydrous) oxides- a fascinating field of colloid science,” Acc. Chem. Res., vol. 14, pp. 22–29, 1981.
    144. K. Y. Pan, Y. F. Liang, Y. C. Pu, Y. J. Hsu, J. W. Yeh and H. C. Shih, “Studies on the Photocatalysis of Core-Shelled SiO2-Ag Nanospheres by Controlled Surface Plasmon Resonance under Visible Light,” Appl. Surf. Sci., vol. 311, pp. 399-404, 2014.
    145. K. Y. Pan, C. H. Chien, Y. C. Pu, C. M. Liu, Y. J. Hsu, J. W. Yeh and H. C. Shih, “Studies on the Annealing and Antibacterial Properties of the Silver-Embedded on Aluminum/Silica Nanospheres,” Nanoscale Res. Lett., 9:307, 2014.
    146. S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold,” Chem. Rev., vol. 107, pp.4797-4862, 2007.
    147. P. K. Jain and M. A. Ei-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett., vol. 8, no. 12, pp. 4347-4352, 2008.
    148. U. Kreibig and M. Vollmer, “Optical properties of metal clusters,’ Springer: Berlin, vol. 25, 1995.
    149. S. Link and M. A. Ei-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B, vol. 103, pp. 4212-4217, 1999.
    150. R. L. Puurunen,” Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, no. 12, pp. 121301-1-52, 2004.
    151. F. Nykänen, P. Soininen and L. Niinistö,“ Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications,” Mater. Sci. Eng. B, vol. 41, no. 1, pp.23-29, 1996.
    152. M Leskelä and M. Ritala, ”Atomic layer deposition (ALD): from precursors to thin film structures,” Thin solid films, vol. 409, no.1, pp. 138-146, 2002.
    153. J. Schrier, D. O. Demchenko and L. W. Wang, “Optical properties of ZnO/ZnS and ZnO/ ZnTe heterostructures for photovoltaic applications,” Nano Lett., vol. 7, no. 8, pp. 2377-2382, 2007.
    154. Y. H. Lin, C. C. Kuo, J. M. Wu, U. S. Chen, Y. S. Chang and H. C. Shin, “Characterization and cathodoluminescence of beak-like SnO2 nanorods,” Jap. J. Appl. Phys., vol. 47, no. 10, pp. 8141-8144, 2008.
    155. S. W. Choi, J. Y. Park and S. S. Kim, ”Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties,” Nanotechnology, vol. 20, no. 46, pp. 465603, 2009.
    156. J. M. Wu and C. C. Kuo, “Ultraviolet photodetectors made from,” Thin Solid Films, vol. 517, no. 12, pp.3870 - 3873, 2009.
    157. C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp and L. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater., vol. 13, no. 17, pp. 1330-1333, 2001.
    158. J. H. Willian and J. S. Douglas, “Phase equilibria in the pseudo-binary In2O3-SnO2 system, ” J. Mater. Sci., vol. 42, no. 17, pp. 7135-7140, 2007.
    159. Y. Q. Zhu and Y. Q. Chen, “Sn-doped polyhedral In2O3 particles: Synthesis, characterization and origins of luminous emission in wide visible range,” J. Soild State Chem., vol. 186, pp. 182-186, 2012.
    160. M. Mazzera, M. Z. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati and L. Zanotti, ”Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments,” Nanotechnology, vol. 18, no. 35, pp. 355707 (7 pages), 2007.
    161. J. M. Wu, “Characterizing and comparing the cathodoluminescence and field emission properties of Sb doped SnO2 and SnO2 nanowires,” Thin solid films, vol. 517, issue 3, pp. 1289-1293, 2008.
    162. O. Warschkow, D. E. Ellis, G. B. González and T. O. Mason, “Defect structures of tin-doped indium oxide,” J. Am. Ceram. Soc.,” vol. 86, issue 10, pp. 1700-1706, 2003.
    163. Z. Sun, J. He, A. Kumbhar and J. Fang, “Nonaqueous synthesis and photoluminescence of ITO nanoparticles,” Langmuir, vol. 26, issue 6, pp. 4246-4250, 2010.
    164. M. Quaas, C. Eggs and H. Wulff, ”Structural studies if ITO thin films with the Rietveld method,” Thin solid film, vol. 332, issue 1-2, pp. 277-281, 1998.
    165. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, vol. 32, issue 5, pp. 751-767, 1976.
    166. M. Girtan, G. Folcher, “Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process,” Surf. Coat. Tech., vol. 172, pp. 242–250, 2003.
    167. M. Zhu, G. Qian, Z. Hong, Z. Wang, X. Fan and M. Wang, “Preparation and characterization of silica–silver core-shell structural submicrometer spheres,” J. Phys. Chem. Solids, vol. 66, pp.748-752, 2005.
    168. Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim and Y. S. Kang, “Synthesis and Characterization of Antibacterial Ag−SiO2 Nanocomposite,” J. Phys. Chem. C, vol. 111, issue 9, pp. 3629-3635, 2007.
    169. D.A. Pawlak, M. Ito, M. Oku, K. Shimamura, T. Fukuda, “Interpretation of XPS O (1s) in Mixed Oxides Proved on Mixed Perovskite Crystals,” J. Phys. Chem. B, vol. 106, issue 2, pp. 504-507, 2002.
    170. J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett., vol. 341, pp. 1-6, 2001.
    171. P. Wang, B. Huang, Y. Dai and M.H. Whangbo, “Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles,” Phys. Chem. Chem. Phys., vol. 14, pp. 9813-9825, 2012.
    172. M. Mennig, M. Schmitt and H. Schmidt: Synthesis of Ag-colloids in sol-gel derived SiO2-coatings on glass. J. Sol-Gel Sci. Technol.1997, 8:1035-1042.
    173. T. Kocareva, I. Grozdanov, B. Pejova: Ag and AgO thin film formation in Agq-triethanolamine solutions. Mater. Lett. 2001, 41:319–323
    174. G. De, A. Licciulli, C. Massaro, L. Tapfer, M. Catalano, G. Battaglin, C. Meneghini, P. Mazzoldi: Silver nanocrystals in silica by sol-gel processing. J. of Non-cryst. Solids 1996, 194:225-234.
    175. Z.J. Jiang, C.Y. Liu, Y. Liu: Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution. Appl. Surf. Sci. 2004, 233:135-140.
    176. S.C. Tang, S.P. Zhu, H.M. Lu, X.K. Meng: Shape evolution and thermal stability of Ag nanoparticles on spherical SiO2 substrates. J. Solid State Chem. 2008, 181:587-592.
    177. Y. Yao, T. Ochiai, H. Ishiguro, R. Nakano, Y. Kubota: Antibacterial performance of a novel photocatalytic-coated cordierite foam for use in air cleaners. Appl. Catal. B: Environ. 2011, 106:592-599.
    178. Ho-Kyun Park, Jin-A Jeong, Yong-Seok Park, Han-Ki Kim and Woon-Jo Cho, “Electrical, optical and structural properties of InZnSnO electrode films grown by unbalanced radio frequency magnetron sputtering,” Thin solid films, vol. 517, issue 18, pp. 5563-5568, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE