研究生: |
林佑昇 Lin, Yu-Sheng |
---|---|
論文名稱: |
奈米化c面藍寶石晶片於發光二極體之氮化鎵磊晶薄膜特性探討 Characterizations of GaN epilayers on nanoscale patterned c-plane sapphire substrates for LEDs |
指導教授: |
葉哲良
Yeh, J. Andrew |
口試委員: |
張玉明
吳孟奇 林瑞明 果尚志 吳耀銓 徐大正 郭浩中 陳志臣 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 141 |
中文關鍵詞: | 氮化鎵 、奈米圖案化藍寶石晶片 、發光二極體 |
外文關鍵詞: | gallium nitrite (GaN), nanoscale patterned sapphire substrate (NPSS), light-emitting diode (LED) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出具有不同表面形貌設計之奈米圖案化c面(0001)藍寶石基板(nanoscale patterned c-plane sapphire substrates, c-NPSS),由其光學特性找出在寬頻譜、高入射角度下,具有高穿透率之最佳化設計。c-NPSS於可見光到近紅外光波長範圍能擁有95%的高穿透率,且在45度入射角,還能夠維持90%的高穿透率。在這樣的奈米結構設計下,可將其利用於增加LED的光萃取率以改善LED的發光效率。同時,本論文並討論利用c-NPSS成功地製作出高品質氮化鎵(gallium nitride, GaN)磊晶薄膜,該奈米結構製程為一不需要半導體玻璃光罩技術之方法,其乃利用自然顯影法(natural lithography)和感應偶合式電漿反應離子蝕刻技術(inductively coupled plasma–reactive ion etching, ICP-RIE)來定義出設計之圖案,並具有均勻性佳、結構密集度高和可大面積製作之優點。此奈米結構分為兩種設計,其一為具有c面(0001)支配的藍寶石奈米結構(c-NPSS-c),另一種為n面(11-23)支配且沒有c面裸露的奈米結構(c-NPSS-n),此兩種設計成功地將不同極性的GaN磊晶層成長於其上,分別為高品質(0001) GaN成長於c-NPSS-c,其X-ray 搖擺曲線 (X-ray rocking curve, XRC)的半高寬(full width at half maximum, FWHM)為211 arcsec;另外高品質非極性(10-10) m-plane GaN成長於c-NPSS-n,其XRC的FWHM為316 arcsec。由AFM分析此兩種磊晶薄膜,其缺陷密度與表面平整度分別為10^7~10^8 cm-2、0.30 nm,由此可證明c-NPSS不只改善了GaN磊晶薄膜也成功地磊晶成長出非極性GaN薄膜。另外,發光二極體(light-emitting diode, LED)成功地製作於c-NPSS-c,利用奈米結構改善發光二極體的光輸出特性,進而增加發光二極體的發光效率,因GaN橫向磊晶於c面藍寶石,因此將形成許多孔洞埋藏於奈米結構中,其不只是改善GaN的磊晶品質更可因為折射率的不同而增加光萃取率。此具有奈米結構之發光二極體與一般發光二極體在操作電流為20 mA相比較下,可提升 2.38倍之光輸出功率。不過,由於c面GaN為具有極性之材料,容易因為產生量子侷限史塔克效應(quantum confined Stark effects, QCSE)而影響內部量子效率,為了改善此一問題,非極性氮化鎵的磊晶成長於是被提出可以增加內部量子效率和避免此效應產生的發光光譜紅移現象,因此,本研究利用目前商用c面藍寶石晶片,成功地製作出高品質非極性氮化鎵材料,將有助於未來發光二極體的發展。
Recently, GaN-based wide bandgap semiconductors are very important material system for fabrication of light emitting devices (LEDs) in a wide range of wavelength. The GaN-based laser diodes (LDs) and LEDs have been widely used in many areas, such as optical storage, backlight in liquid crystal displays, traffic signal and solid state lighting. High external quantum efficiency (EQE) of LEDs with high crystalline quality are urgently demanded for achieving high performance LEDs on nanoscale patterned c-plane sapphire substrates (c-NPSS) technologies. This work is carried out not only to realize high performance c-plane GaN-based LEDs but also to project the high quality of nonpolar GaN epitaxy on c-NPSS.
This dissertation explores the fabrication, structural properties, and physical features, optical and electronic properties of polar and nonpolar GaN epilayers grown on c-NPSS. The main focus of this dissertation can be divided into four parts. First part is the fabrication of c-NPSS by inductively coupled plasma-reactive ion etching (ICP-RIE) with different materials as nano-masks for enhancing the light extraction and improving crystalline quality. Second part is the optical characterization of c-NPSS with different feature sizes. The formation of the c-NPSS is employed by ICP-RIE with self-assemble nickel silicides as the nano-masks. The optimal feature size was presented with high transmittance over broadband spectra. The transmittance of visible to near-IR spectra was found to be 95% at normal incidence and over 90% at an incident angle of 45 degree. In the mid-IR spectrum, the transmittance exceeds 88% until the reflection is no longer suppressed by nanostructures. The polarization properties have also been investigated. The nanostructures can enhance the reflectivity ratio 90% for wavelengths shorter than 400 nm. As the amplitude ratio, enhanced from 50% to 80% over the whole visible spectrum. Next part is the morphology of c-NPSS has two designs, one is c-facet sapphire dominated (c-NPSS-c) and the other is n-facet sapphire dominated (c-NPSS-n). The formation of the nanostructures is employed by ICP-RIE with polysilicon as the nano-masks formed by low pressure chemical vapor deposition and wet-etching methods. The polar and nonpolar GaN epilayers was grown on c-NPSS using MOCVD. This part focus on the fabrication and optical properties are investigated using AFM for surface morphology, high resolution XRD for crystalline orientation, TRPL for crystalline quality, and SEM and TEM for growth/structure analysis. The GaN epilayers were characterized by XRD and AFM, which reveals the GaN epilayer can be c-plane (0001) or m-plane (10-10) orientation depending on the surface morphology of nanopatterned sapphire substrate. The corresponding full width at half maximum (FWHM) of the X-ray rocking curves (XRC) for c- and m-plane GaN are 211 and 316 arcsec, respectively. The root-mean-square (rms) surface roughness was measured to be 0.30 nm by AFM. The pits density on GaN surface improved two orders of magnitude than that on convenitional sapphire substrate (CSS) by AFM. The last part presents the comparison of GaN-based LEDs grown on c-NPSS-c and CSS. The fabrication, electronic properties and light output performance of GaN-based LEDs are analyzed in detail. The optical and structural properties are investigated by using XRD, electroluminescence (EL) measurement, SEM, and high resolution TEM. The LEDs fabricated on c-NPSS-c exhibit an output power of 33.10 mW at a driving current of 20 mA, which is 2.38-fold higher than that on CSS. In addition, the corresponding EQE are 58.30% and 24.50% for LED on c-NPSS-c and CSS, respectively.
REFERENCE
[1] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett. 81, 1246 (2002)
[2] L. J. Schowalter, G. A. Slack, J. B. Whitlock, K. Morgan, S. B. Schujman, B. Raghothamachar, M. Dudley, and K. R. Evans, “Cathodoluminescence studies of large bulk AlN crystals,” Phys. Stat. Sol. (c) 0, 2618 (2003)
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687 (1994)
[4] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys. 34, L797 (1995)
[5] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett. 71, 2154 (1997)
[6] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, “High-voltage GaN pin vertical rectifiers with 2 μm thick i-layer,” Electron Lett. 36, 1971 (2000)
[7] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition,” IEEE Trans Electron Devices 48, 490 (2001)
[8] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, “GaN bipolar junction transistors with regrown emitters, ” Electronchem. Solid-State Lett. 4, G39 (2001)
[9] R. Juza and H. Hahn, “Crystal structures of Cu3N, GaN and InN - metallic amides and metallic nitrides V Announcement”, Anorg. Allegem. Chem. 239, 282 (1938); and “Examinations on the nitrides of cadmium, gallium, indium and germanium - Metal amides and metal nitrides VIII Announcement,” Anorg. Allegem. Chem. 244, 133 (1940)
[10] H. P. Maruska and J. J. Tietjen, “Preparation and properties of vapor-deposited single-crystalline GaN,” Appl. Phys. Lett. 15, 327 (1969)
[11] J. I. Pankove, E. A. Miller, and J. E. Berkeyheister, “GaN blue light-emitting diodes, ” J. Lumin. 5, 84 (1972)
[12] H. P. Maruska, W. C. Rhines, and D. A. Stevendson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence,” Mater. Res. Bull. 7, 777 (1972).
[13] W. Seifert, R. Franzheld, E. Buttler, H. Sobotta, and V. Reide, “On the origin of free carriers in high-conducting n-GaN,” Cryst. Res. Technol. 18, 383 (1983)
[14] A. G. Guy, Essentials of materials science, McGraw-Hill Book company, New York, 1976, p.153
[15] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes,” Appl. Phys. Lett. 66, 1249 (1995)
[16] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69, 4188 (1996)
[17] J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room‐temperature cw operation of GaInAsP/InP double‐heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28, 709 (1976)
[18] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986)
[19] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation,” Jpn. J. Appl. Phys. 28, 2112 (1989)
[20] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31, 1258 (1992)
[21] S. Nakamura, T. Mukai, and M. Senoh, “P-GaN/n-InGaN/n-GaN double- heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, 8 (1993)
[22] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687 (1994)
[23] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, T. Mukai, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76, 22 (2000)
[24] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth 144, 133 (1994)
[25] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett. 71, 2259 (1997)
[26] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 36, L899 (1997)
[27] X. Zhang, R. R. Li, P. D. Dapkus, and D. H. Rich, “Direct lateral epitaxy overgrowth of GaN on sapphire substrates based on a sparse GaN nucleation technique,” Appl. Phys. Lett. 77, 2213 (2000)
[28] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Cryst. Growth 221, 316 (2000)
[29] H. S. Cheong, M. K. Yoo, H. G. Kim, S. J. Bae, C. S. Kim, C.-H. Hong, J. H. Baek, H. J. Kim, Y. M. Yu, and H. K. Cho, “Direct heteroepitaxial lateral overgrowth of GaN on stripe-patterned sapphire substrates with very thin SiO2 masks,” Phys. Stat. Sol. (b) 241, 2763 (2004)
[30] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 40, L583 (2001)
[31] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode,” Jpn. J. Appl. Phys. 41, L1431 (2002)
[32] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN patterned sapphire template,” Appl. Phys. Lett. 89, 161105 (2006)
[33] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” J. Appl. Phys. 103, 014314 (2008)
[34] W. J. Tropf, M. E. Thomas, and R. K. Frazer, “Windows and domes past, present, and future,” Proc. of SPIE 5078, 80 (2003)
[35] B. S. Patel, and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146 (1999)
[36] L. P. Feng, Z. T. Liu, and Q. Li, “Strengthening sapphire at elevated temperatures by SiO2 films,” Appl. Surf. Sci. 253, 5363 (2007)
[37] C. M. Liu, J. C. Chen, L. J. Hu, and S. P. Lin, “The effect of annealing, precipitation-strengthening, and compressive coating processes on sapphire strength,” Mater. Sci. Eng. A 420, 212 (2006)
[38] H. Z. Durusoy, O. Duyar, A. Aydınlı, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21 (2003)
[39] H. Miyake, T. Ishii, A. Motogaito, and K. Hiramatsu, “Improved optical properties of AlGaN using periodic structures,” Phys. Stat. Sol. (c) 5, 1822 (2008)
[40] H. Yoshida, Y. Terada, H. Miyake, and K. Hiramatsu, “Antireflection Effect of Self-Organized GaN Nanotip Structure from Ultraviolet to Visible Region,” Jpn. J. Appl. Phys. 41, L1134 (2002)
[41] C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, S. C. Wang, “Gallium Nitride Nanorods Fabricated by Inductively Coupled Plasma Reactive Ion Etching,” Jpn. J. Appl. Phys. 41, L910 (2002)
[42] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode,” IEEE J. Sel. Topics Quantum Electron. 15, 1066 (2009)
[43] J. Lee, D. Kim, J. Kim, and H. Jeon, “GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns,” Curr. Appl. Phys. 9, 633 (2009)
[44] J. Lee, S.Ahn, S. Kim, D.-U. Kim, H. Jeon, S.-J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94, 101105 (2009)
[45] C.-C. Kao, Y.-K. Su, C.-L. Lin, and J.-J. Chen, “The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates,” Appl. Phys. Lett. 97, 023111 (2010)
[46] H. W. Huang, J. K. Huang, S. Y. Kuo, K. Y. Lee, and H. C. Kuo, “High extraction efficiency GaN-based light-emitting diodes on embedded SiO2 nanorod array and nanoscale patterned sapphire substrate,” Appl. Phys. Lett. 96, 263115 (2010)
[47] H. W. Huang, C. H. Lin, J. K. Huang, K. Y. Lee, C. F. Lin, C. C. Yu, J. Y. Tsai, R. Hsueh, H. C. Kuo, and S. C. Wang, “Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography,” Mater. Sci. Eng. B 164, 76 (2009)
[48] H. W. Huang, C. H. Lin, Z. K. Huang, K. Y. Lee, C. C. Yu, and H. C. Kuo, “Improved light output power of GaN-based light-emitting diodes using double photonic quasi-crystal patterns,” IEEE Electron Device Lett. 30, 1152 (2009)
[49] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98, 151102 (2011)
[50] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, C. C. Kao, “Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates,” J. Cryst. Growth 311, 2973 (2009)
[51] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN–based LEDs with nano–patterned sapphire substrates,” IEEE Photon. Technol. Lett. 20, 1193 (2008)
[52] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, C. C. Kao, “GaN-Based Light-Emitting Diodes Grown on Photonic Crystal-Patterned Sapphire Substrates by Nanosphere Lithography,” Jpn. J. Appl. Phys. 47, 6706 (2008)
[53] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Fabrication and characterization of GaN-based LEDs grown on nanopatterned sapphire substrates,” phys. stat. sol. (a) 205, 1719 (2008)
[54] C. H. Chiu, D. W. Lin, Z. Y. Li, C. H. Chiu, C. L. Chao, C. C. Tu, H. C. Kuo, T. C. Lu, and S. C. Wang, “Improvement in Crystalline Quality of InGaN-Based Epilayer on Sapphire via Nanoscaled Epitaxial Lateral Overgrowth,” Jpn. J. Appl. Phys. 49, 105501 (2010)
[55] C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate,” Appl. Phys. Lett. 95, 011110 (2009)
[56] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Fabrication of nano-patterned sapphire substrates and their application to the improvement of the performance of GaN-based LEDs,” J. Phys. D: Appl. Phys. 41, 115106 (2008)
[57] F. Yan, H. Gao, Y. Zhang, J. Li, Y. Zeng, G. Wang, F. Yang, “High-efficiency GaN-based blue LEDs grown on nano-patterned sapphire substrates for solid-state lighting,” Proc. of SPIE 6841, 684103 (2007)
[58] H.-C. Lin, R.-S. Lin, J.-I. Chyi, and C.-M. Lee, “Light Output Enhancement of InGaN Light-Emitting Diodes Grown on Masklessly Etched Sapphire Substrates,” IEEE Photon. Technol. Lett. 20, 1621 (2008)
[59] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56, R10024 (1997)
[60] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93, 9383 (2003)
[61] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gradner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379 (2001)
[62] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN quantum well interconnected microdisk light emitting diodes,” Appl. Phys. Lett. 77, 3236 (2000)
[63] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett. 84, 466 (2004)
[64] H. W. Choi, M. D. Dawson, P. R. Edwards, and R. W. Martin, “High extraction efficiency InGaN micro-ring light-emitting diodes,” Appl. Phys. Lett. 83, 4483 (2003)
[65] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855 (2004)
[66] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93, 081108 (2008).
[67] Y. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “High Brightness GaN-Based Light-Emitting Diodes,” IEEE J. Disp. Technol. 3, 118 (2007)
[68] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett. 91, 171114 (2007)
[69] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005)
[70] H. G. Kim, M. G Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 261117 (2007)
[71] C. H. Lin, H. C. Kuo, C. F. Lai, H. W. Huang, K. M. Leung, C. C. Yu, and J. R. Lo, “Light extraction enhancement of InGaN-based green LEDs with a composite omnidirectional reflector,” Semicond. Sci. Technol. 21, 1513 (2006)
[72] J. -S. Ha, S. W. Lee, H. –J. Lee, H. -J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process,” IEEE Photon. Technol. Lett. 20, 175 (2008)
[73] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence of nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80, 1204 (2002)
[74] T. F. Kuech, R. T. Collins, D. L. Smith, and C. Maihiot, “Field-effect transistor structure based on strain-induced polarization charges,” J. Appl. Phys. 67, 2650 (1990)
[75] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, “Low efficiency droop in blue-green m-plane InGaN GaN light emitting diodes,” Appl. Phys. Lett. 96, 231101 (2010)
[76] R. Kucharski, M. Rudziński, M. Zając, R. Doradziński,1 J. Garczyński, L. Sierzputowski, R. Kudrawiec, J. Serafińczuk, W. Strupiński, and R. Dwiliński, “Nonpolar GaN substrates grown by ammonothermal method,” Appl. Phys. Lett., 95, 131119 (2009)
[77] Z. L. Weber, “Extended defects in bulk GaN and III-nitrides grown on this substrate,” J. Cryst. Growth 312, 2599 (2010)
[78] S. -M Hwang, Y. G. Seo, K. H. Baik, I. –S. Cho, J. H. Baek, S. Jung, T. G. Kim, and M. Cho, “Demonstration of nonpolar a-plane InGaN GaN light emitting diode on r-plane sapphire substrate” Appl. Phys. Lett. 95, 071101 (2009)
[79] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (110) a-plane GaN thin films grown on (102) r-plane sapphire” Appl. Phys. Lett. 81, 469 (2002)
[80] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khana, “light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire” Appl. Phys. Lett. 84, 3663 (2004)
[81] T. Zhu, D. Martin, and N. Grandjean, “M-Plane GaN Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 48, 020226 (2009)
[82] R. Armitage, and H. Hirayama, “M-plane GaN grown on m-sapphire by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 92, 092121 (2008)
[83] K. C. Kim, M. C. Schmidt, F. Wu, M. B. McLaurin, A. Hirai, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Low extended defect density nonpolar m-plane GaN by sidewall lateral epitaxial overgrowth,” Appl. Phys. Lett. 93, 142108 (2008)
[84] Q. Sun, C. D. Yerino, Y. Zhang, Y. S. Cho, S.Y. Kwon, B. H. Kong, H. K. Cho, I. H. Lee, and J. Han, “Effect of NH3 flow rate on m-plane GaN growth on m-plane SiC by metalorganic chemical vapor deposition,” J. Cryst. Growth 311, 3824, (2009)
[85] M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 1281, (2004)
[86] Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K. H. Ploog, “Impact of nucleation conditions on the structural and optical properties of M-plane GaN(100) grown on γ-LiAlO2,” J. Appl. Phys. 92, 5714 (2002)
[87] K. R. Wang, M. Ramsteiner, C. Mauder, Q. Wan, T. Hentschel, H. T. Grahn, H. Kalisch, M. Heuken, R. H. Jansen, and A. Trampert, “ Striated surface morphology and crystal orientation of m-plane GaN films grown on γ-LiAlO2(100),” Appl. Phys. Lett. 96, 231914 (2010)
[88] K. Xu, J. Xu, P. Deng, R. S. Qiu, and Z. Fang, “MOCVD Growth of GaN on LiAlO2 (100) Substrates,” Phys. Status Solidi A 176, 589 (1999)
[89] G. Li, S. J. Shih, and Z. Fu, “A new system for synthesis of high quality nonpolar GaN thin films,” Chem. Commun. 46, 1206 (2010)
[90] A. Kobayashi, S. Kawano, Y. Kawaguchi, J. Ohta, and H. Fujioka, “Room temperature epitaxial growth of m-plane GaN on lattice-matched ZnO substrates,” Appl. Phys. Lett. 90, 041908 (2007)
[91] K. Okuno, Y. Saito, S. Boyama, N. Nakada, S. Nitta, R. G. Tohmon, Y. Ushida, and N. Shibata, “m-plane GaN Films Grown on Patterned a-Plane Sapphire Substrates with 3-inch Diameter,” Appl. Phys. Express 2, 031002 (2009)
[92] L. Sun, F. Yan, J. Wang, H. Zhang, Y. Zeng, G. Wang, and J. Li, “The field emission properties of nonpolar a-plane n-type GaN films grown on nano-patterned sapphire substrates,” Phys. Status Solidi A 206, 1501 (2009)
[93] A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. BlaÈsi, A. Heinzel, D. Sporn, W. DoÈllc, V. Wittwera, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351, 73 (1999)
[94] C. G. Bernhard, G. Höglund, and D. Ottoson, “On the relation between pigment position and light sensitivity of the compound eye in different nocturnal insects,” J. Insect Physiol. 9, 573 (1963)
[95] B. -J. Bae, S. -H. Hong, E. -J. Hong, H. Lee, and G. -Y. Jung, “Fabrication of Moth-Eye Structure on Glass by Ultraviolet Imprinting Process with Polymer Template,” Jpn. J. Appl. Phys. 48, 010207 (2009)
[96] Daniel H. Raguin, and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Optics 32, 1154 (1993)
[97] J. W. Leem, D. H. Joo, J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95, 2221 (2011)
[98] M. J. Huang, C. R. Yang, Y. C. Chiou, and R. T. Lee, “Fabrication of nanoporous antireflection surfaces on silicon,” Sol. Energy Mater. Sol. Cells 92, 1352 (2008)
[99] I. Schnitzer, E. Yablonovitch. C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174 (1993)
[100] C. H. Chiu, C. E. Lee, C. L. Chao, B. S. Cheng, H. W. Huang, H. C. Kuo, T. C. Lu, S. C. Wang, W. L. Kuo, C. S. Hsiao, and S. Y. Chen, “Enhancement of Light Output Intensity by Integrating ZnO Nanorod Arrays on GaN-Based LLO Vertical LEDs,” Electronchem. Solid-State Lett. 11, H84 (2008)
[101] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770 (2007)
[102] W. Q. Xie, J. I. Oh, and W. Z. Shen, “Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays,” Nanotechnology 22, 065704 (2011)
[103] M. K. Datta, S. K. Pabi, and B. S. Murty, “Thermal stability of nanocrystalline Ni silicides synthesized by mechanical alloying,” Mater. Sci. Eng. A 284, 219 (2000)
[104] Y. Hu, S. P. Tay, “Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process,” J. Vac. Sci. Technol. A 16, 1820 (1998)
[105] I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, New York, 1977).
[106] M. W. Jenkins, “A New Preferential Etch for Defects in Silicon Crystals,” J. Electrochem. Soc. 124, 757 (1977)
[107] D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett. 83, 33 (2003)
[108] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parkeh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, “Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 94, 1461 (2003)
[109] H. Xu, N. Lu, G. Shi, D. Qi, B. Yang, H. Li, W. Xu, and L. Chi, “Biomimetic Antireflective Hierarchical Arrays,” Langmuir 27, 4963 (2011)
[110] Y. J. Cho, Y. W. Lee, H. M. Cho, and I. W. Lee, “Ellipsometric examination of optical property of the Si-SiO2 interface using the s-wave antireflection,” J. Appl. Phys. 85, 1114 (1999)
[111] C. H. Chang, P. Yu, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett. 94, 051114 (2009)
[112] I. H. Lee, J. J. Lee, P. Kung, F. J. Sanchez, and M. Razeghi, “Band-gap narrowing and potential fluctuation in Si-doped GaN,” Appl. Phys. Lett. 74, 102 (1999)
[113] M. A. Reshchikov, and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005)
[114] K. H. Kwon, C. J. Eiting, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, Z. Liliental-Weber, and M. Benamara, “Observation of long photoluminescence decay times for high-quality GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 77, 2503 (2000)
[115] R. Y. Korotkov, M. A. Reshchikov, and B. W. Wessels, “Acceptors in undoped GaN studied by transient photoluminescence,” Physica B 325, 1 (2003)
[116] M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett. 81, 4970 (2002)
[117] M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Transient photoluminescence of defect transitions in freestanding GaN,” Appl. Phys. Lett. 78, 2882 (2001)
[118] G. Irmer, T. Brumme, M. Herms, T. Wernicke, M. Kneissl, and M. Weyers, “Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering,” J. Mater. Sci: Mater. Electron 19, S51 (2008)
[119] T. Wei, R. Duan, J. Wang, J. Li, Z. Huo, J. Yang, and Y. Zeng, “Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 47, 3346 (2008)
[120] K. Kim, “Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure,” Trans. Electr. Electron. Mater. 10, 40 (2009)
[121] L. T. Tung, K. L. Lin, E. Y. Chang, W. C. Huang, Y. L. Hsiao, and C. H. Chiang, “Photoluminescence and Raman studies of GaN films grown by MOCVD,” J. Physics: Conference Series 187, 012021 (2009)
[122] T. Tite, C. J. Lee, and Y, M, Chang, “Polarization Raman spectroscopy of GaN nanorod bundles,” J. Appl. Phys. 108, 033504 (2010)
[123] K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, and I. Fujimura, “High-quality nonpolar m-plane GaN substrates grown by HVPE,” phys. stat. sol. a 205, 1056 (2008)
[124] J. -M. Wagner, and F. Bechstedt, “Phonon deformation potentials of α-GaN and -AlN An ab initio calculation,” Appl. Phys. Lett. 77, 346 (2000)
[125] T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, “Optical investigation of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., 74, 3128 (1999)
[126] K. M. Lau, K. M. Wong, X. Zou, and P. Chen, “Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper,” Opt. Express, 19, A956 (2011)
[127] J. Als-Nielsen, and D. McMorro, Elements of Modern X-ray Physics (Wiley & Sons, New York, 2001)
[128] D. B. Wiliams, and C. B. Carter, Transmission Electron Microscopy (Plenum Press, New York, 1996).
[129] K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices (Springer, 2007), Chap. 2.
[130] H. Harima, “Properties of GaN and related compounds studied by means of Raman scattering,” J. Phys.: Condens. Matter 14, R967 (2002)
[131] C. V. Raman, and K. S. Krishnan, “A New Type of Secondary Radiation,” Nature 121, 501 (1928)