研究生: |
許周叡 Hsu, Chou Jui |
---|---|
論文名稱: |
圓柱形共振腔在軸向負載下之彈塑性變形對其高頻電磁場共振頻率之影響研究 Resonance Frequency Shift of the Electromagnetic Field of a Circular Cylindrical Cavity as Being Elastoplastic Deformed by Axial Loading |
指導教授: |
葉孟考
Yeh, Meng Kao |
口試委員: |
蔡佳霖
Tsai, Jia Lin 林明泉 Lin, Ming Chyuan 葉孟考 Yeh, Meng Kao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 圓柱形腔體 、彈塑性變形 、結構-電磁場研究 |
外文關鍵詞: | Cylindrical cavity, Elastoplastic behavior, Structure-electromagnetic research |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技不斷的研究與創新,各個領域都已經有許多的科學研究與應用,因此將不同領域進行結合也成為了相當有趣的議題。其中一項應用是粒子加速器中的超導共振腔,當此薄殼結構在受到不同負載下的結構變形行為對電磁場共振頻率飄移的影響是近年來被關注的一項重要議題。本研究在於探討當薄殼圓柱形腔體受彈塑性變形時所影響到的第一個橫向電磁場模態的共振頻率。在採用雙線性曲線擬合及Ramberg-Osgood曲線擬合以描述材料的彈塑性行為的基礎下,不僅可導出結構變形的理論解,並且可成功地與高頻電磁場的理論解連結。之後並對各材料常數如降伏強度、正切模數、硬化指數等對結構變形與共振頻率的影響等進行探討。另外也輔以商用套裝有限單元分析軟體ANSYS進行數值模擬分析,以真實不銹鋼腔體為模型,模擬腔體受軸向壓力的分析,並與理論解進行相互驗證進一步驗證理論解之正確性。目前已初步建構出一套理論計算方法,可推估腔體材料特性各個參數改變對腔體進入彈塑性變形與高頻電磁場共振頻率變化的影響。
The couple-field research becomes interested and important in science and application researches in the recent decades. The superconducting cavity is made of thin-walled niobium and thus its electromagnetic resonance frequencies relate to its structural deformation. This structure-electromagnetic research becomes one of the coupled-filed topics, with a main application on superconducting radio-frequency cavity for particle accelerators. This study investigates the effects of the elastoplastic behavior of a thin-walled circular cylindrical cavity on its resonance frequency of first transverse magnetic mode, TM010 mode. Both the bilinear fit and Ramberg-Osgood fit are used to approach the material’s elastoplastic behavior in the theoretical analysis for structural deformation, which is then successfully linked to the electromagnetic resonance frequency of the circular cylindrical cavity. Effects of the related parameters such as yielding stress and tangent modulus are examined. The commercial available finite element code ANSYS is used for multi-physics computation.
1. F. R. Elder, A.M. Gurewitsch, R.V. Langmuir and H. C. Pollock, “Radiation from Electrons in a Synchrotron,” Physical Review, Vol. 71, pp. 829-830, 1947.
2. N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ruhr-Universitat Bochum, Germany, 2008.
3. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000。
4. H. Padamsee, ”The Science and Technology of Superconducting Cavity for Accelerators,” Superconducting Science and Technology, Vol. 14, pp.28-51, 2001.
5. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, Wiley, New York, 1998.
6. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays,R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley,J. Reilly, D. Rubin and J. Sears, “Development of Superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
7. S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Report SRF 990407-03, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 1999.
8. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Report SRF 010717-05, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 2001.
9. E. Chojmacki and J. Sears, “Superconducting RF Cavities and Cryogenics for the CESR III Upgrade,” Report SRF 990716-09, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 1999.
10. V. D. Shemeliny and G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC2012, New Orleans, Louisiana, USA, 2012.
11. M. Meidlinger, T. L. Grimm and W. Hartung, “Design of Half-Reentrant SRF Cavities,” Physica C, Vol. 441, pp. 155-158, 2006.
12. T. P. Wangler, RF linear Accelerators, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
13. M. G. Rao and P. Kneisel, “Thermal and Mechanical Properties of Electron Beam Welded and Heated-Treated Niobium for TESLA,” Continuous Electron Beam Accelerator Facility Newport News, pp. 1-7, 1993.
14. M. G. Rao and P. Kneisel, “High RRR Material Properties of Niobium and Specifications for Fabrication of Superconducting Cavities,” Fermilab, TD-06-048, 2006.
15. H. Gassot, “ Mechanical Stability of the RF Superconducting Cavities,” Proceedings of EPAC, Paris, France, 2002.
16. R. Valdiviez, D. Schrage, F. Martinez and W. Clark, “The Use of Dispersion Strengthend Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000.
17. M. F. Thomas, Cryogenic Engineering, Marcel Dekker Inc. , pp. 181-214, 1997.
18. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,“ Report of National Superconducting Cyclotron Laboratory, Aug., 2000.
19. K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture Toughness and Mechanical Properties of Pure Niobium and its Welded Joints of Superconducting Cavity at 4K,” 9th Workshop on RF Superconductivity, 1999.
20. R. P. Walsh, R. R. Mitchell, V.T. Toplosky and R. C. GentZlinger, “ Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Materials,” 9th Workshop on RF Superconductivity, 1999.
21. J. Knobloch and H. Padamsee, “Enhanced Susceptibility of Nb Cavity Equator Welds to the Hydrogen Related Q-virus,” Report SRF 981012-12, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 1998.
22. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
23. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K. M. Schirm, M. Taufer and W. Weingarten, “Analysis and Results of the Industrial Production of the Superconducting Nb/Cu Cavities for the LEP 2 Project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
24. G. Myneni and P. Kneisel, “High RRR Niobium Material Studies,” JLAB-TN-02-01, 2002.
25. H. Padamsee, “Review of Experience with HOM Damped Cavities,” Report of SRF 980612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, New York, 1998.
26. C. C. Yang, “HOM Damping in RF Cavities of Storage Ring,” Ph.D. Dissertation, National Tsing Hua University, 2002.
27. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp. 1-4, 1997 .
28. J. Kirchgessner, “The Use of Super Conducting RF for High Current Applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
29. J. Mammosser, P. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” The Institute of Electrical and Electronics Engineers, pp. 947-949, 1993.
30. Y. C. Tsai, “Studies of High-order-mode Suppression in Storage Ring RF Cavities,” Ph.D. Dissertation, National Tsing Hua University, 1997.
31. 陳家逸,高頻共振腔高次模抑制方法之研究, 國立清華大學碩士論文, 2003。
32. G. H. Luo, L. H. Chang, C. C. Kuo, M. C. Lin, R. Sah, T. T. Yang and Ch. Wang, “The Superconducting RF Cavity and 500mA Beam Current Upgrade Project at Taiwan Light Source,” Proceeding of European Particle Accelerator Conference, pp. 654-656, Vienna, Austria, 2000.
33. J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report SRF 940321-01, Laboratory if Nuclear Studies, Cornell University, Ithaca, New York, 1994.
34. 陳伯毅,低溫超導共振腔之結構變形對內建電磁場特性之影響, 國立清華大學碩士論文,2002。
35. 鍾明忠,共振腔結構受端面位移影響之模態分析與實驗, 國立清華大學碩士論文, 2004。
36. E. Zaplatin, C. Compton, W. Hartung, M. J. Johnson, F. Marti, J. Oliva, J. Popielarski and R. C. York, “Structural Analysis of MSU Quarter-waver Resonators,” Proc. SRF2009, pp. 560-563, 2009.
37. E. Zaplatin, “FZJ SC Cavity Coupled Analysis,” Proc. of the 12th Workshop on RF Superconductivity, pp.342-346, 2005.
38. 高福聲,低溫超導共振腔之結構變形對內建電磁場特性之影響,國立清華大學碩士論文,2002。
39. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, “A Coupled-field Analysis on RF Cavity,” Particle Accelerator Conference , Chicago, USA, 2001.
40. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cavity,” Proceedings of EPAC, Paris, pp. 2259-2261, 2002.
41. M. C. Lin, Ch. Wang, L. H. Chang and G. H. Luo, “Effect of Material Properties on Resonance Frequency of CESR-III Type 500 MHz SRF Cavity,” Proceedings of the 2001Particle Acceleration Conference, pp. 1371-1374, 2004.
42. 郭泓毅,超導共振腔之結構變形對內部電磁場特性之影響,國立清華大學碩士論文,2013。
43. 呂盿儒,超導共振腔中央直線段長度對電磁場特性之影響,國立清華大學碩士論文,2014。
44. 王皓宇,在外力負載下圓柱形金屬共振腔之高頻電磁場共振頻率與其機械材料特性之相關研究,國立清華大學碩士論文,2011。
45. J. Chakrabarty, Theory of Plasticity, Butterworth-Heinemann, UK, 2012.
46. W. Ramberg, W. R. Osgood, “Description of Stress-Strain Curves by Three Parameters,” NACA Technical Note, No. 902, 1943.
47. V. Eduard and K. Theoder, Thin Plates and Shell, Marcel Dekker, New York, 2001.
48. R. von Mises,“Mechanik der festen Körper im plastisch deformablen Zustand.“ Göttin. Nachr. Math. Phys., vol. 1, pp. 582–592, 1913.
49. D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, New York, 1989.
50. A. V. Kudrin and E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium : Exact solutions of the Maxwell equations,” JEPT, 110, pp. 537-548, Mar., 2010.
51. M. K. Yeh , M. C. Lin, Ch. Wang, H.Y. Wang and M.R. Lu “Determination of Mechanical Properties with a Microwave Technique,” In writting.
52. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
53. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
54. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.