簡易檢索 / 詳目顯示

研究生: 陳建亨
Chien-Heng Chen
論文名稱: 複合材料木琴鍵之結構最佳化設計與動態分析
Optimum Structural Design and Dynamic Analysis of Composite Xylophone Bars
指導教授: 葉孟考
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 木琴鍵振動最佳化分析有限元素分析複合材料三明治結構
外文關鍵詞: Xylophone bar, Vibration, Optimization analysis, Finite element analysis, Composite material, Sandwich structure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料具質量輕、高強度、高韌性、設計自由度高,且有耐天候、耐腐蝕、耐敲擊等優點,目前已廣泛應用於各種領域,且逐漸取代傳統材料成為材料工業之主流。近年來由於高級木材日益稀少,因此逐漸有使用纖維強化高分子複合材料製作樂器之趨勢。本研究以有限元素分析模擬纖維強化高分子複合材料木琴鍵之振動模態與自然頻率,並與琴鍵聲音量測結果比較。琴鍵結構以繪圖軟體進行設計,並配合有限元素分析軟體計算琴鍵前三個垂直方向彎曲模態與自然頻率。本研究亦設計三明治結構之複合材料木琴鍵,以期降低琴鍵結構之重量。核心材料分別以兩種中空玻璃珠作為高分子樹脂之填充材料,以探討中空玻璃珠種類對琴鍵結構設計之影響;表面材料則使用玻璃纖維強化高分子複材,以保有其耐天候、耐腐蝕與耐敲擊等特性。另外為增加琴鍵設計效率,本研究以子問題近似法(Subproblem approximation method)與一階法(First order method)進行琴鍵之結構最佳化設計,以建立一套有效率之複合材料木琴鍵開發技術流程,使這套技術可在未來運用至不同音階之琴鍵開發。


    Composite materials have advantages of light weight, high strength, high toughness, high design degree of freedom, outstanding corrosion resistance, and are suitable to be used in several industries to replace the traditional materials. The rosewood, a common material used for xylophone bars, becomes rare recently and composite material is a good substitute for xylophone bars. In this study the fiberglass/vinylester composite material was used as a new material for xylophone bars to replace the rosewood. The finite element analysis was used to calculate the mode shapes and natural frequencies for composites xylophone bars and the results were compared with the experimental data. The CAD software was used to design the structures of xylophone bars and the FEA software was usd to calculate the natural frequencies of first three bending modes. The sandwich composite xylophone bars were also designed in order to decrease the weight of structure. Two kinds of the hollow glass microsphere were used to fill the polymer as the core material, and the influence of hollow glass microsphere to the structure was discussed. The surface material used was the fiberglass/vinylester composites to retain the properties of outstanding corrosion resistance. The subproblem approximation method and the first order method were used to optimize the xylophone bars and an efficient process of designing composite xylophone bars was established.

    中文摘要...................................................i 英文摘要..................................................ii 致謝.....................................................iii 目錄......................................................iv 圖表目錄.................................................vii 第一章 緒論................................................1 1.1研究動機................................................1 1.2文獻回顧................................................1 1.3研究主題................................................6 第二章 有限元素分析與最佳化理論............................7 2.1有限元素分析............................................7 2.1.1 複合材料木琴鍵之有限元素分析.........................7 2.1.2 複合材料木琴鍵之分析假設條件.........................8 2.2模態分析................................................9 2.3最佳化分析.............................................10 2.3.1 最佳化分析流程......................................10 2.3.2 最佳化數學模型......................................10 2.3.2.1 單弧型琴鍵........................................12 2.3.2.2 雙弧型琴鍵........................................12 2.3.3 最佳化分析之假設條件................................13 2.3.4 最佳化分析理論......................................13 2.3.4.1 子問題近似法......................................13 2.3.4.2 一階法............................................14 第三章 實驗設備與程序.....................................16 3.1 實驗設備..............................................16 3.1.1 製作複合材料疊層板之實驗設備........................16 3.1.2 製作高分子複合材料之實驗設備........................16 3.1.3製作複合材料木琴鍵之實驗設備.........................17 3.1.4 量測材料常數之實驗設備..............................17 3.1.5材料密度量測之實驗設備...............................18 3.2 複合材料疊層板試片製作................................18 3.3 高分子複合材料試片製作................................18 3.4 材料常數量測..........................................20 3.4.1 軸向楊氏係數和波松比................................21 3.4.2 橫向楊氏係數........................................21 3.4.3 剪力模數............................................21 3.4.4 高分子複材之楊氏係數與波松比........................22 3.5 密度量測實驗..........................................22 3.6 複合材料木琴鍵製作....................................23 3.6.1 單弧型與雙弧型之複合材料木琴鍵......................23 3.6.2 三明治複合材料木琴鍵................................23 3.7 聲音量測實驗..........................................23 第四章 結果與討論.........................................24 4.1 材料性質量測結果......................................24 4.1.1玻璃纖維複合材料疊層板拉伸試驗結果...................24 4.1.2高分子複合材料拉伸試驗結果...........................25 4.1.2.1純乙烯樹脂拉伸試驗結果.............................25 4.1.2.2中空玻璃珠/乙烯樹脂複合材料拉伸試驗結果............26 4.2 有限元素分析結果......................................27 4.2.1 單弧型與雙弧型之複合材料木琴鍵......................27 4.2.2三明治複合材料木琴鍵.................................29 4.3 聲音量測結果與模態分析比較............................29 4.3.1 單弧型複合材料木琴鍵................................29 4.3.2 雙弧型複合材料木琴鍵................................29 4.3.3 三明治複合材料木琴鍵................................30 4.4 最佳化分析結果........................................30 4.4.1 單弧型琴鍵模型......................................30 4.4.2 雙弧型琴鍵模型......................................31 4.4.3兩種琴鍵模型之比較...................................31 4.5 單變數靈敏度分析結果..................................32 4.5.1 單弧型琴鍵模型......................................33 4.5.2 雙弧型琴鍵模型......................................34 4.5.3 三明治琴鍵模型......................................35 第五章 結論...............................................37 參考文獻..................................................38 圖表整理..................................................41

    1. I. Bork, “Practical tuning of xylophone bars and resonators,” Applied Acoustics, Vol. 46, pp. 103-127, 1995.
    2. J. Bretos, C. Santamaria and J. A. Moral, “Frequencies, input admittances and bandwidths of the natural bending eigenmodes in xylophone bars,” Journal of Sound and Vibration, Vol. 203, pp. 1-9, 1997.
    3. J. Bretos, C. Santamaria and J. A. Moral, “Finite element analysis and experimental measurements of natural eigenmodes and random responses of wooden bars used in musical instruments,” Applied Acoustics, Vol. 56, pp. 141-156, 1999.
    4. I. Bork, A. Chaigne, L. C. Trebuchet, M. Kosfelder, and D. Pillot, “Comparison between modal analysis and finite element modeling of a marimba bar,” Acoustica United with Acta Acustica, Vol. 85, pp. 258-266, 1999.
    5. L. Brancheriau, H. Bailleres and C. Sales, “Acoustic resonance of xylophone bars: experimental and analytic approach of frequency shift phenomenon during the tuning operation of xylophone Bars,” Wood Science and Technology, Vol. 40, pp. 94-106, 2006.
    6. A. Chaigne and V. Doutaut, “Numerical simulations of xylophones. I. time-domain modeling of the vibration bars,” Acoustical Society of America, Vol. 101, No. 1, pp. 539-557, 1997.
    7. B. H. Suits, “Basic physics of xylophone and marimba bars,” American Association of Physics Teachers, Vol. 69, No. 7, pp. 743-750, 2001.
    8. V. Doutaut, D. Matignon and A. Chaigne, “Numerical simulations of xylophones. II. time-domain modeling of the resonator and of the radiated sound pressure,” Acoustical Society of America, Vol. 104, No. 3, pp. 1633-1647, 1998.
    9. F. Orduna-Bustamante, “Nonuniform beams with harmonically related overtones for use in percussion instruments,” Acoustical Society of America, Vol. 90, No. 6, pp. 2935-2941, 1991.
    10. J. Petrolito and K. A. Legge, “Optimal undercuts for the tuning of percussive beams,” Acoustical Society of America, Vol. 102, No. 4, pp. 2432-2437, 1997.
    11. J. Petrolito and K. A. Legge, “Designing musical structures using a constrained optimization,” Acoustical Society of America, Vol. 117, No. 1, pp. 384-390, 2005.
    12. J. T. Katsikadelis and G. C. Tsiatas, “Regulating the vibratory motion of beams using shape optimization,” Journal of Sound and Vibration, Vol. 292, pp. 390-401, 2006.
    13. W. Annicchiarico and M. Cerrolaza, “Optimization of finite element bidimensional models: an approach based on genetic algorithms,” Finite Elements in Analysis and Design, Vol. 29, pp. 231-257, 1998.
    14. W. Annicchiarico and M. Cerrolaza, “Structural shape optimization 3D finite-element models based on genetic algorithms and geometric modeling,” Finite Elements in Analysis and Design, Vol. 37, pp. 403-415, 2001.
    15. J. J. Kim and H. Y. Kim, “Shape design of an engine mount by a method of parameter optimization,” Computer and Structures, Vol. 65, No. 5, pp. 725-731, 1997.
    16. B. C. Wu, G. S. Young and T. Y. Huang, “Application of a two-level optimization process to conceptual structural design of a machine tool,” International Journal of Machine Tools and Manufacture, Vol. 40, No. 6, pp. 783-794, 2000.
    17. S. Wang, S. Aadanur and B. Z. Jang, “Mechanical and thermal-mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites,” Composites Part B, Vol. 28, No. 3, pp. 215-231, 1997.
    18. H. Wang, W. Han, H. Tian and Y. Wang, “The preparation and properties of glass powder reinforced epoxy resin,” Materials Letters, Vol. 59, pp. 94-99, 2005.
    19. S. J. Park, F. L. Jin and C. Lee, “Perparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins,” Materials Science and Engineering A, Vol. 402, pp. 335-340, 2005.
    20. M. Koopman, G. Gouadec, K. Carlisle, K. K. Chawla and G. Gladysz, “Compression testing of hollow microspheres (microballoons) to obtain mechanical properties,” Scripta Materialia, Vol. 50, pp. 593-596, 2004.
    21. S. N. Goyanes, J. D. Marconi, P. G. Konig, M. D. Martin and I. Mondragon, “Dynamical properties of epoxy composites filled with quartz powder,” Journal of Alloys and Compounds, Vol. 310, pp. 374-377, 2000.
    22. R. Roy, B. K. Sarkar and N. R. Bose, “Impact fatigue of glass fibre-vinylester resin composites,” Composites Part A, Vol. 32, pp. 871-876, 2001.
    23. J. R. Banerjee, “Frequency equation and mode shape formulae for composite Timoshenko beams,” Composite Structures, Vol. 51, pp. 381-388, 2001.
    24. J. H. Yim, S. Y. Cho, Y. J. Seo and B. Z. Jang, “A study on material of 0°laminated composite sandwich cantilever beams with a viscoelastic layer,” Composite Structures, Vol. 60, pp. 367-374, 2003.
    25. J. R. Banerjee, “Free vibration of sandwich beams using the dynamic stiffness method,” Composite Structures, Vol. 81, pp. 1915-1922, 2003.
    26. K. V. Singh, G. Li, and S. S. Pang, “Free vibration and physical parameter identification of non-uniform composite beams,” Composite Structures, Vol. 74, pp. 37-50, 2006.
    27. A. A. El-Hamid Hamada, “Vibration and damping analysis of beams with composite coats,” Composite Structures, Vol. 32, pp. 33-38, 1995.
    28. A. S. Hadi and N. Ashton, “Measurement and theoretical modeling of the damping properties of a uni-directional glass/epoxy composite”, Composite Structures, Vol 34, pp. 381-385, 1996.
    29. J. Gu, X. Zhang, and M. Gu, “Effect of fiber coating on the longitudinal damping capacity of fiber-reinforced metal matrix composites,” Materials Letters, Vol. 59, pp. 180-184, 2005.
    30. C. Kyriazoglou and F. J. Guild, “Finite element prediction of damping of composite GFRP and CFRP laminates – a hybrid formulation – vibration damping experiments and Rayleigh damping,” Composite Science and Technology, Vol. 66, pp. 487-498, 2006.
    31. ANSYS Release 10.0, ANSYS, Inc., PA, 2005.
    32. Solidworks 2005, SolidWorks Corporation., 2005.
    33. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc.1997
    34. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc.1997
    35. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
    36. K. S. Kim, and C. S. Hong, “Delamination growth in angle-ply laminated composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
    37. M. K. Yeh, and C. M. Tan, “Buckling of elliptically delaminated composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
    38. ASTM D3039-76, “Standard test method for tensile properties of fiber-resin composites,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 162-165, 1983.
    39. ASTM D3518-76, “Standard practice for inplane shear stress-strain response of unidirectional reinforced plastics,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 202-207, 1983.
    40. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
    41. ASTM D638-82a, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
    42. ASTM D792-00, “Standard test method for density and specific gravity (relative density) of plastics by displacement,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 315-318, 1983.
    43. ASTM E756-98, “Standard test method for measuring vibration-damping properties of materials,” Annual Book of ASTM Standards, 1998.
    44. LEAP-5, LinearX Systems Inc., 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE