簡易檢索 / 詳目顯示

研究生: 蔡明翰
Ming-Han Tsai
論文名稱: 新型CMOS MEMS全差動Z軸加速度計
A NOVEL OUT-OF-PLANE ACCELEROMETER WITH FULLY-DIFFERENTIAL SENSING CIRCUIT AND SUB-MICRON GAP
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 全差分式電容感測三軸感測加速度計CMOS-MEMS
外文關鍵詞: CMOS-MEMS, Accelerometer, Fully differential
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CMOS-MEMS主要是利用半導體製程來同時整合微小機械結構與電子電路在單一晶片中,其優勢在於系統整合之能力以及半導體製程的精準線寬,使MEMS與半導體CMOS製程相整合而具備有半商業化的優勢。
    本研究之主題在於利用TSMC 0.35μm 2P4M CMOS的標準製程來設計製造與量測一出平面加速度感測器,本研究不同於以往CMOS-MEMS的地方在於整合濕蝕刻製程以達到次微米的極小感測電極間距,同時結構能夠符合完全差分式(Fully differential)電容感測介面,本論文之機械結構搭配整合於晶片上的CMOS感測電路使得此加速度感測器成為一個完整的感測器元件。本論文最後整合了出平面加速度計與舊有的同平面加速度計整合成一三軸感測加速度計晶片。


    This thesis presents a novel CMOS-MEMS out-of-plane linear accelerometer. This capacitance type accelerometer contains special designed gap-closing sensing electrode arrays with on-chip fully differential sensing circuits. Moreover, the comb-finger electrodes have the characteristics of high fill-factor and sub-micron gap to increase the sensing capacitance. Thus, the sensitivity and signal to noise ratio can be further improved. This study has established a post-CMOS wet-etching process to realize the accelerometer with sensing electrodes of sub-micron gap in the out-of-plane direction. The present accelerometer has been demonstrated using the standard TSMC 2P4M process plus the post-release technique. This study also integrates previous in-plane linear accelerometers to fabricate a fully differential 3-axes accelerometer chip.

    目 錄 I 圖 目 錄 III 表 目 錄 VIII 第一章 前言 1 1-1 研究動機 1 1-2 加速度計基本原理 3 1-3 文獻回顧 4 1-3.1 微機電出平面加速度計 5 1-3.2□CMOS-MEMS 後製程分類 8 1-4 研究目標 9 第二章 元件設計與分析 17 2-1 金屬濕蝕刻結構設計 17 2-2 機械與感測結構設計 19 2-2.1 質量塊 20 2-2.2 彈簧 20 2-3 感測臂與自我測試致動器設計 22 2-4 出平面加速度計感測架構與整合 24 2-5 應力補償設計 26 第三章 製程與實驗 41 3-1 TSMC 0.35 μm 2P4M CMOS製程概述 41 3-2 定義CMOS MEMS 元件 42 3-3 CMOS MEMS後製程 43 第四章 元件特性量測與比較 59 4-1 結構特性量測與比較 59 4-2 元件特性量測 61 4-3 結果討論 62 4-4 三軸加速度計整合與量測 64 第五章 結論與未來工作 78 第六章 參考文獻 80

    [1] H. Baltes, O. Brand, A. Hierlemann, D Lange and C. Hagleitner, “CMOS MEMS – Present and Future,” the 15th IEEE international conference on Micro Electro Mechanical Sstem, 2002, pp459-466.
    [2] Soumik Ghosh and Magdy Bayoumi, “On Integrated CMOS-MEMS System-on-Chip”, The 3rd International IEEE-NEWCAS Conference, 2005, pp31-34.
    [3] S.S. Rao Mechanical Vibrations.4th edition , Pearson Education International
    [4] www.dlp.com
    [5] www.analog.com
    [6] J.M. Bustillo, G. K. Fedder, C.T.-C.Nguyen, R.T. Howe, “Process
    technology for the modular integration of CMOS and polysilicon
    microstructures.” Microsys. Technol. 1994, 1, pp.130–141.
    [7] F. Pourahamdi, L. Christel, and K. E. Petersen, “Silicon accelerometer with new thermal self-test mechanism,” Technical Digest, IEEE International Solid State Sensors and Actuators Workshop, Hilton Head Island, SC, June, 1992, pp 22-25.
    [8] H. Seidel, H. Riedel, R. Kolbeck, G. Muck, W. Kupke, and M.
    KoMiger, “Capacitive silicon accelerometer with highly symmetrical
    design,” Sensors and Actuators A, 21-23, pp 312-315, 1990.
    [9] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, 21-23, pp 297-302, 1990.
    [10] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree-of-
    freedom response,” Transducers ’91, San Francisco, CA, June 1991, pp 97 -100.
    [11] N. Yazdi, and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical System, 9, no.4, pp 544-550, 2000.
    [12] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E.
    Wuganuma, and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
    [13] L. C. Spangler, and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer,” Sensors and Actuators A, 54, pp 523-529, 1996.
    [14] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined
    Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, no. 1, pp 18-25, 2001.
    [15] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of glass inertial sensors,” Journal of Microelectromechanical System, 11, No.1, pp 85-90, 2002.
    [16] F. Goodenough, “Airbags boom when IC accelerometer sees 50g,” Electronic Design, 39, No.15. Aug., 1991.
    [17] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R.G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application”, Sensor and Actuator A,54,pp472-476, 1966.
    [18] H. Xie, and G.K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” IEEE MEMS’ 2000, Miyazaki, Japan, Jan. 2000, pp 496-501.
    [19] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-
    axis SOI capacitive accelerometer with PLL C-V converter,” Sensors and Actuators A, 75, pp 77-85, 1999.
    [20] K. Ishihara, C.-F. Yung, A.A. Ayon, and M.A. Schmidt, “An inertial sensor technology using DRIE and wafer bonding with interconnecting capability,” Journal of Microelectromechanical System, 8, No.4, pp 403-408, 1999.
    [21] J.C. Lotters, W. Olthuis, P.H. Veltink, and P. Bergveld, “Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer,” IEEE MEMS’97, Nagoya, Japan, Jan. 97, pp 31-36.
    [22] W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of
    submicrometer, single crystal Si accelerometer,” Journal of
    Microelectromechanical Systems, 10, No. 4, pp 518-614, 2001.
    [23] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect,” IEEE Transactions on Electronic Devices, ED-35, pp.764-770, 1988.
    [24] P. Scheeper, J. O. Gullov, and M. Kofoed, “A piezoelectric triaxial
    accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
    [25] L.M. Roylance and J.B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electronic Devices, ED-26, pp.1911-1917, 1979.
    [26] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A high-performance planar piezoresistive accelerometer,” Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
    [27] P. M. Zavaracky, B. McClelland, K. Warner, J. Wang, F. Hartley, and B. Dolgin, “Design and process considerations for a tunneling tip accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 352-358, 1996.
    [28] C.-H. Liu and T. W. Kenny, “A High-Precision, Wide-Bandwidth
    Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical Systems, 10, pp 425-433, 2001.
    [29] T. Storgaard-Larsen, S. Bouwstra, and O. Leistiko, “Opto-
    Mechanical accelerometer based on strain sensing by a bragg grating in a planar waveguide,” Sensors and Actuators A, 52, pp 25-32, 1996.
    [30] E. Abbaspour-Sani, R.-S. Huang, and C. Y. Kwok ”A wide-range linear optical accelerometer,” Sensors and Actuators A, 49, pp 149-154, 1995.
    [31] G.Zhang, H.Xie, L.E.de Rosset, and G.K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation” MEMS '99 , Twelfth IEEE International Conference Micro Electro Mechanical Systems,Jan. 1999, pp. 606 – 611
    [32] Hongwei Qu, Deyou Fang and Huikai Xie, “A single-crystal silicon 3-axis CMOS-MEMS accelerometer”, Sensors 2004,Vol.2 , pp. 661-664.
    [33] Julius M. Tsai and Gary K. Fedder, “Mechanical Noise-limited CMOS-MEMS Accelerometer”, MEMS 2005, pp. 630-633.
    [34] Luo, H.; Fedder, G.K.; Carley, L.R, “A 1 mG lateral CMOS-MEMS accelerometer”, MEMS 2000, pp. 502-507.
    [35] Jiangfeng Wu; Fedder, G.K.; Carley, L.R., “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers”, Solid-States Circuits 2002, vol.1, pp. 428-478.
    [36] Hasnain Lakdawala and G.K. Fedder, “Temperature Stabilization of CMOS Capacitive accelerometers”, J. Micromech. Microeng., 2004, vol.14, pp.559-566.
    [37] Arjun Selvakumar and Khalil Najafi, “A High Sensitivity Z-axis Capacitive Silicon Microaccelerometer with a torsional Suspension”, J. of MEMS, 1998, vol. 7, No.2
    [38] N. Yazdi and K. Najafi, “An all-silicon single-wafer fabrication
    technology for precision microaccelerometers,” in Tech. Dig.
    9th Int. Conf. Solid-State Sensors and Actuators, Chicago, IL, June 1977, pp. 1181–1184.
    [39] www.m-inf.com
    [40] www.wii.com
    [41] www.samsung.com
    [42] James M. Gere. “Mechanical of Materials”, 5th edition.
    [43] G.Zhang, H.Xie, L.E.de Rosset, and G.K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation” MEMS '99 , Twelfth IEEE International Conference Micro Electro Mechanical Systems,Jan. 1999, pp. 606 – 611
    [44] W. Fang and J.A. Wickert, 1995, “Comments on Measuring Thin Film Stresses Using Bi-layer Micromachined Beams,” Journal of Micromechanics and Microengineering, Vol 5, pp. 276-281
    [45] 孫志銘,“CMOS微透鏡移動平台之設計與製造”清華大學 2006.
    [46] H. Luo, “Integrated Multiple Device CMOS-MEMS IMU System and RF MEMS Application”, Ph.D.Thesis, ECE CMU 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE