研究生: |
林東炫 Lin, Dong-Syuan |
---|---|
論文名稱: |
多壁奈米碳管/環氧樹脂複合材料之機械與動態特性研究 Mechanical and Dynamic Properties of MWNTs/Epoxy Composites |
指導教授: |
葉孟考
Yeh, Meng-Kao 戴念華 Tai, Nyan-Hwa |
口試委員: |
葉孟考
戴念華 葉銘泉 蔡佳霖 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 複合材料 、奈米碳管 、機械性質 、動態特性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合材料由基材與補強材組成,普遍常被使用的基材多為高分子材料,具有彈性、輕巧等特質,奈米碳管具有極佳的力學特性與電、熱性質,因此極適合作為複合材料中的補強材料。本研究以多壁奈米碳管補強高分子樹脂,製備不同含量的多壁奈米碳管/環氧樹脂試片,並加入官能基化流程,探討基本機械特性-楊氏模數與抗拉強度隨添加碳管濃度的不同所產生的變化情形。此外亦探討此高分子複合材料的動態特性,動態特性包含阻尼比與自然頻率,本研究以有限單元分析模擬懸臂樑結構之模態及自然頻率,將模擬結果與振動實驗量測結果進行比較,討論參數的變化對模擬之自然頻率結果產生之影響,以及實驗中自然頻率隨著奈米碳管添加濃度不同而出現的變化情形。
實驗結果顯示添加多壁奈米碳管3.0 wt%,相較於純環氧樹脂其楊氏模數可提升11.3 %,而在添加2.0 wt%多壁奈米碳管時,抗拉強度可提升至19.7 %;共振頻率方面,實驗與模擬均顯示加入多壁碳管給予各模態之共振頻率提升效果有限,然而在結構抑震阻尼特性卻有不錯的效果,而透過改質可以大幅提升複合材料的拉伸韌性。最後以SEM觀察複合材料斷裂面之微結構,了解複合材料於拉伸負載下之破壞機制。
Composite is composed of matrix and reinforcement. Polymer materials are often as matrix, which has flexible, light and other advantages. CNTs having excellent mechanical, electrical and thermal properties, is very suitable to be used as the reinforcement in composites. In this study, MWNTs were uesd to reinforce polymer resin. Different weight percents of MWNTs/epoxy specimens were varied to explore the basic mechanical properties - Young's modulus and tensile strength. Besides the dynamic characteristics including natural frequency and damping ratio are also discussed. The finite element analysis was used to simulate modal and natural frequencies of specimens. This results were compared with the experimental measurements.
The experimental results show that composites specimens with 2.0 wt% can improve 11.3% of its Young's modulus when compared to the pure epoxy. While adding 3.0 wt% MWNTs can improve the tensile strength to 19.7%. The results also show that adding MWNTs gives the natural frequency a little change at each mode, and a larger change in damping characteristics. In addition, a significant enhancement of the tensile toughness of the composites through functionalizion was found. Finally, SEM images of the fracture surface gives some explanation about the breaking mechanism in the microstructure.
[1] R. F. Gibson, Principles of composite material mechanics, McGraw-Hill, New York, 2007.
[2] 成會明,奈米碳管,初版,五南出版社,2004
[3] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, Vol. 287, pp. 637-640, 2000.
[4] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, ” Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002.
[5] E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, Vol 61, pp. 1899-1912, 2001.
[6] H. Chen, H. B. Liu, L. Yang, J. X. Li, L. Yang, “Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC,” International Journal of Hydrogen Energy, Vol. 35, pp. 3105- 3109, 2010.
[7] X. Huang, J. W. Gillespie Jr, R. F. Eduljee, “Effect of temperature on the transverse cracking behavior of cross-ply composite laminates,” Composites Part B: Engineering, Vol. 28, pp. 419-424, 1997.
[8] J. Bian, X. W. Wei, S. J. Gong, H. Zhang, Z. P. Guan, “Improving the thermal and mechanical properties of poly(propylene carbonate) by incorporating functionalized graphite oxide,” Journal of Applied Polymer Science, DOI 10. 1002, pp. 2743- 2752, 2011.
[9] Q. Z. Wang, F. S. Han, C. X. Cui, “Effects of macroscopic graphite particulates on the damping behavior of CuAlMn shape memory alloy,” Journal of Materials Science, Vol. 42, pp. 5029-5035, 2007.
[10] S. T. Zhang, Anyan Gu, H. F. Gao, X. Q. Che, “Characterization of exfoliated graphite prepared with the method of secondary intervening,” International Journal of Industrial Chemistry, Vol. 2, pp. 123-130, 2011.
[11] S.R. Dhakate, R.B. Mathur, B.K. Kakati, T.L. Dhami, “Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 32, pp. 4537-4543, 2007.
[12] 康玳瑋,石墨/環氧樹脂複合材料之機械性質與動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2013。
[13] F. H. Zhang, R. G. Wang, X. D. He, C. Wang, L. N. Ren, “Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid,” Journal of Materials Science, Vol. 44, pp. 3574–3577, 2009.
[14] 楊凱婷,添加不同的奈米碳管對於碳纖維布強化酚醛樹脂複合材料機械行為的影響,大同大學動力材料工程學系碩士論文,台北,2010。
[15] S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F. A. Nüesch, B. T. T. Chu, “Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites,” Chemical Physics Letters, Vol. 531, pp. 6-10, 2012.
[16] S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon, Vol. 49, pp. 198-205, 2011.
[17] S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhauf, F. A. Nuesch, B. T. T. Chu, “Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites,” Carbon, Vol. 50, pp. 5380-5386, 2012.
[18] K. T. Lau and D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
[19] E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, Vol 61, pp. 1899-1912, 2001.
[20] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of singlewall carbon nanotubes and their mechanical properties,” Physical Review Letters, Vol. 84, pp. 5552-5555, 2000.
[21] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, Z. F. Ren, “Superplastic carbon nanotubes,” Nature, Vol. 439, p. 281, 2006.
[22] M. K. Yeh, N. H. Tai, J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
[23] 吳宗憲,含多壁奈米碳管之骨水泥複合材料的機械性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2009。
[24] J. B. Bai and A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation,” Composites: Part A, Vol. 34, pp. 689-694, 2003.
[25] M. Felisberto, A. Arias-Dura´n, J. A. Ramos, I. Mondragon, R. Candal, S. Goyanes, G. H. Rubiolo, “Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites,” PhysicaB, Vol. 407, pp. 3181-3183, 2012.
[26] W. Chen, M. L. Auad, R. J. J. Williams, S. R. Nutt, “Improving the dispersion and flexural strength of multiwalled carbon nanotubes–stiff epoxy composites through b-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix,” European Polymer Journal, Vol. 42, pp. 2765-2772, 2006.
[27] K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng, H. L. Li, “Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
[28] Y. Zhang, Z. Shi, Z. Gu, S. Iijima, “Structure modification of single-wall carbon nanotubes,” Carbon, Vol. 38, pp. 2055-2059, 2000.
[29] J. Wang, Z. Fang, A. Gu, L. Xu, F. Liu, “Effect of Amino-Functionalization of Multi-walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix,” Journal of Applied Polymer Science, Vol. 100, pp. 97-104, 2006.
[30] C. Cao, J. Li, Z. Jia, Z. Chen, “Decoration of carbon nanotubes with amine groups by reacting with diamine,” New Carbon Materials, Vol. 19, pp. 137-140, 2004.
[31] Y. Zheng, A. Zhang, Q. Chen, J. Zhang, R. Ning, “Functionalized effect on carbon nanotube/epoxy nano-composites,” Materials Science and Engineering A, Vol. 435-436, pp. 145-149, 2006.
[32] J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, “Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Composites: Part A, Vol. 38, pp. 1331-1336, 2007.
[33] F. W. Harri and H. J. Spinelli, Reactive Oligomers, ACS Symp. Ser., 282, Am. Chem. Soc., Washington DC, 1985.
[34] 吳紹榮,環氧樹脂/聚氧化二甲苯摻合體反應性、相行為及機械性質之研究,國立中央大學化學工程研究所博士論文,桃園,2000。
[35] 沈文馨,微波處理對多比奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
[36] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
[37] A. J. Barker and V. Balasundaram, “Compression testing of carbon fibre-reinforced plastics exposed to humid environments,” Composites, Vol. 18, pp. 217-226. 1987.
[38] R. T. Potter and D. Purslow, “The environmental degradation of notched CFRP in compression,” Composites, Vol. 14, pp. 206-225, 1983.
[39] C. E. Browning, C. E. Husman, J. M. Whitney, “Moisture effects in epoxy matrix composites,” Composite materials: testing and design, 1978.
[40] L. N. Saw, M. Mariatti, A. R. Azura, A. Azizan, J. K. Kim, “Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites,” Composites: Part B, Vol. 43, pp. 2973-2979, 2012.
[41] J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon, Vol. 47, pp. 922-925, 2009.
[42] 林清彬,葉明勳,莊東漢,顧鈞豪,碳纖維/環氧樹脂複合材料之低溫及輻射劣化效應,中國航空太空學會學刊第二十九卷第二期第153-159頁,1997。
[43] ASTM D638-10, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[44] ASTM E132-04, “Standard Test Method for Poisson’s Ratio at Room Temperature,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[45] ASTM D790-10, “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[46] ASTM D792-08, “Standard test methods for density and specific gravity (relative density) of plastics by displacement,” Annual Book of ASTM Standards, Vol. 8.1, 2008.
[47] ASTM E756-05, “Standard test method for measuring vibration-damping properties of materials,” Annual Book of ASTM Standards, vol. 4.06, 2010.
[48] ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
[49] J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, 1991.
[50] F. Wang, J. Xiao, S. Li, J. Wang, “Influence of Modified Carbon Nanotubes With Triethyllene—Tetramine on Mechanical Properties of Epoxy Resin Composites,” 宇航材料工艺, Vol. 3, pp. 34-40, 2009.
[51] 蔡淑慧,拉曼光譜在奈米碳管檢測上之應用,奈米通訊第12卷第2期第47-51頁,2005。
[52] B. S. Hadavand, K. M. Javid, M. Gharagozlou, ”Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite,” Materials and Design, Vol. 50, pp. 62-67, 2013.
[53] M. Mohammed, Z. Li, J. Cui, T. Chen, ”Acid-doped multi-wall carbon nanotube/n-Si heterojunctions for enhanced light harvesting,” Solar Energy, Vol. 106, pp. 171-176, 2014.
[54] 謝宗翰,多壁碳管補強高分子樹脂之複材樑與三明治結構動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2005。
[55] G. Gkikas, N. -M. Barkoula, A. S. Paipetis, “Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy,” Composites: Part B, Vol. 43, pp. 2697-2705, 2012.
[56] 江柏賢,石墨/環氧樹脂複合材料之機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2012
[57] Z. K. Chen, J. P. Yang, Q. Q. Ni, S. Y. Fu, Y. G. Huang, “Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties,” Polymer, Vol. 50, pp. 4753-4759, 2009.
[58] G. Keskar, Inferring mechanical resonances in micro- and nanocantilevers using the harmonic detection of resonance (HDR) method to develop a novel sensing platform, ProQuest, UMI Dissertation Publishing, 2011.
[59] N. Kordani, A. Fereidoon, M. Ashoori, “Effect of Carbon Nanotube on Damping Properties of Epoxy,” Journal of Electronic Science and Technology, Vol. 8, pp. 25-30, 2010.
[60] A. Buldum and J. P. Lu, “Atomic scale sliding and rolling of carbon nanotubes,” Physics Review Letters, vol. 83, no. 24, pp. 5050-5053, 1999.
[61] H. Rajoria and N. Jalili, ”Standard test method for measuring vibration-damping properties of materials,” Composites Science and Technology, Vol. 65, pp. 2079-2093, 2010.
[62] L. Ci and J. B. Bai, “The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness,” Composites Science and Technology, Vol. 66, pp. 599-603, 2006.
[63] E. S. Park, “Preparation, Characterization and Applicability of Covalently Functionalized MWNT,” In: S. Suzuki, Ed., Physical and Chemical Properties of Carbon Nanotubes, InTech-Open Access Publisher, Rijeka, pp. 215- 244, 2013.