研究生: |
蔡明利 Ming-Li Tsai |
---|---|
論文名稱: |
雙-亞硝鐵化合物(Dinitrosyl Iron Complexes):[2Fe2S] cluster降解(degradation)及修復(repair)之生化模型化合物研究 Dinitrosyl Iron Complexes (DNICs):Biomimetic model study on degradation and repair of [2Fe2S] cluster |
指導教授: |
廖文峯
Weng-Feng Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 一氧化氮 、雙-亞硝鐵化合物 、模型化合物 、鐵硫錯合物 |
外文關鍵詞: | nitric oxide, dinitrosyl iron complexes, model compound, Fe-S cluster |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[PPN][Fe(CO)3(NO)]與S8在THF下反應會生成DNIC化合物(dinitrosyl iron complex) [PPN][S5Fe(NO)2] (1)及已知之[2Fe2S]化合物[PPN]2[S5Fe(μ-S)2FeS5] (2)。將[2Fe-2S] cluster 2與一氧化氮在THF下反應會將[2Fe2S]化合物 2轉變為DNIC化合物 1。在有一氧化氮捕捉試劑[(C4H8O)Fe(S,S-C6H4)2]– (3) 下,以352 nm UV光源對complex 1可直接修復回[2Fe2S]化合物 2,此實驗結果係為成功之生化擬態化學以解釋生化學家所觀測之E. coli.細胞中[2Fe2S] cluster被一氧化氮修飾形成DNIC,在外加L-cysteine及cysteine desulfurase之情況下,可將被一氧化氮修飾而形成之DNIC修復回[2Fe2S] cluster。實驗結果顯示,在光照下complex 1轉變為complex 2,外加一氧化氮捕捉試劑[(C4H8O)Fe(S,S-C6H4)2]–是必需的。且不同一氧化氮捕捉試劑對DNIC complex 1修復回[2Fe2S] complex 2有不同之影響。以complex 3為一氧化氮捕捉試劑,需光照才能修復回[2Fe2S] complex 2;以[Fe(S2CN(Et)2)2]為一氧化氮捕捉試劑則不需光照。magnetic susceptibility之量測、EPR光譜及XAS K-edge吸收光譜之實驗結果證實,complex 1之電子環境可被描敘為{Fe(NO)2}9 FeI(·NO)2,S=1/2之形式。另外也成功合成更具水溶性之DNIC化合物[K-18-crown-6-ether][S5Fe(NO)2] (5)。有趣的是[PPN][(NO)Fe(S,S-C6H2-3,6-Cl,Cl)2] 與[PPN][(C4H8O)Fe(S,S-C6H4)2]經由transnitrosylatin形成[PPN][(NO)Fe(S,S-C6H4)2] (4)。另外由不同比例之complex 1與[Fe(DTC)3] 反應結果顯示,鍵結於complex 1之NO是以·NO之形式提供。
Reaction of [PPN][Fe(CO)3(NO)] and S8 in a 1:1 molar ratio in THF proceeded to give the dinitrosyl iron complex [PPN][S5Fe(NO)2] (1) and the known [PPN]2[S5Fe(μ-S)2FeS5] (2). Nitrosylatin of complex 2 in THF shows that cluster 2 is converted into the dinitrosyl iron complex 1 identified by IR, UV-vis, and X-ray diffraction analysis. A THF solution of dinitrosyl iron complex 1 can be transformed back to the [2Fe-2S] cluster 2 in the presence of NO-acceptor reagent [(C4H8O)Fe(S,S-C6H4)2]–(3) (or [Fe(S2CN(Et)2)2]) under photolysis. This result demonstrates a successful biomimetic reaction cycle (Scheme 2) on degradation and reassembly of the [2Fe-2S] cluster [S5Fe(μ-S)2FeS5]2– relevant to the biological cycle (Scheme 1) of the nitric oxide-modified and repair of the ferredoxin [2Fe-2S] cluster by cysteine desulfurase and L-cysteine in vitro. This study implicates that NO-acceptor [(C4H8O)Fe(S,S-C6H4)2]– is required in promoting transformation of dinitrosyl iron complex 1 into cluster 2 under photolysis. Apparent differences were found in the efficiency of transnitrosylation in two NO acceptors, [(C4H8O)Fe(S,S-C6H4)2]– (photolysis, at λ = 352 nm) and [Fe(S2CN(Et)2)2] (no photolysis needed). For the electronic structure of {Fe(NO)2} core, EPR, magnetic susceptibility measurement, and Fe K-/L-edge XAS spectroscopy of complex 1 lead to a description of {Fe+1(•NO)2}9. The water soluble DNIC complex [K-18-crown-6-ether][ S5Fe(NO)2](5) was also synthesized and characterized by IR, UV/vis, X-ray diffraction analysis. NO-transfer from [PPN][(NO)Fe(S,S-C6H2-3,6-Cl,Cl)2] to [PPN][(C4H8O)Fe(S,S-C6H4)2] (3),presumably via associative mechanism, was observed in THF at ambient temperature.
1. Koshland, D. E. Jr. Science 1992, 258, 1861.
2. Stamler, J. S. Cell 1994, 78, 931.
3. Garrett, R. H.; Grisham, C. M. Biochemistry 2nd, Harcourt college publishers, 1999; p S-31.
4. Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993
5. Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 38, 1882
6. Saura, M.; Zaragoza, C.; McMillan, A.; Quick, R. A.; Hohenadl, C.; Lowenstein, J. M.; Lowenstein, C. J. Immunity 1999, 10, 21.
7. Lipton, S. A.; Choi, Y. B.; Pan, Z. H.; Lei, S. Z.; Chen, H-S. V.; Sucher, N. J.; Loscalzo, J.; Singel, D. J.; Stamler, J. S. Nature 1993, 364, 626.
8. Vanin, A. F.; Stukan, R.A.; Manukhina, E. B. Biochimica et Biophysica Acta 1996, 1295, 5
9. Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155.
10. Reginato, N; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217.
11. Costanzo, S.; Menage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorganica Chimica Acta 2001, 318, 1. .
12. Vanin, A. F.; Malenkova, I. V.; Serezhenkov, V. A. NITRIC OXIDE:Biology and Chemistry 1997, 1, 191.
13. Voevodskaya, N. V.; Serezhenkov, V. A.; Cooper, C. E.; Kubrina, L. N.; Vanin, A. F. Biochem. J. 2002, 368, 633.
14. Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochemical Pharmacology 2002, 63, 485.
15. Wu, C. K.; Dailey, H. A.; Rose, J. P.; Burden, A.; Sellers, V. M.; Wang, B. C. Nature Structural Biology 2001, 8, 156.
16. Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699.
17. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5146.
18. Hidalgo, E.; Demple, B. The EMBO journal 1994, 13, 138.
19. Rogers, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980.
20. Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868
21. Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Műlsch, A. J. Biol. Chem. 1995, 270, 29244
22. Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Műlsch, A. J. Biol. Chem. 1997, 272, 21767
23. Enemark, J. H.; Feltham, R. D.; Coord. Chem. Rev. 1974, 13, 339
24. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.
25. Ileperuma, O. A.; Feltham, R. D.; Inorg. Chem. 1975, 14, 3042.
26. Xia, Y.; Zweier, J. L. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 12705.
Xia, Y.; Cardounel, A. J.; Vanin, A. F.; Zweier, J. L. Free Radical Biology & Medicine 2000, 29, 793.