簡易檢索 / 詳目顯示

研究生: 黃崇恩
Huang, Tsung-En
論文名稱: 基於群體偏好以及協商推薦膳食規劃
Recommending a Meal Plan Based on Group Preference and Negotiation
指導教授: 蘇豐文
Soo, Von-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 62
中文關鍵詞: 膳食規劃限制滿足食譜排程群體偏好協商推薦
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一天三餐的準備是每個家庭每天的功課,但實際上要規劃出一份滿足各種需求的餐點需要許多方面的知識及考量。以往的食譜推薦機制多數只著重於營養的計算,但並未著重在食譜排程(recipe scheduling)功能及使用者的偏好上。他們僅推薦給使用者一份各種食品的組合而非一份餐點,並且多以單一使用者為服務對象。本篇論文中,我們提出一個以知識本體為基礎的膳食設計系統(knowledge-based meal planning system),運用回溯式門檻接受法(Backtracking Threshold Accepting, BATA)來處理以食譜為變數及營養攝取量為限制的限制滿足問題(constraint satisfaction problem, CSP) 。系統運用模糊理論(Fuzzy Theorem)於餐點的分數計算上來尋找最佳的解,同時也考慮到群體使用者們的個人偏好(group preference),並基於納許議價(Nash bargaining)模型以及協商(negotiation)機制推薦給使用者每日盡可能營養均衡且又貼近使用者群喜好的實際餐點。


    Chapter 1 Introduction 6 1.1 Background and Introduction 6 1.2 Related Works 8 1.2.1 Common Approaches to Recommendation 8 1.2.2 Constraint Satisfaction Problem 9 1.2.3 Social Choice Theory 12 Chapter 2 The System Overview 16 2.1 Meal Planner 16 2.2 Recipe and Ingredient Database 18 2.3 Nutrition Knowledge Database 21 2.4 Preference Profile Database 22 Chapter 3 Meal Planning 23 3.1 Recipe Scheduling 23 3.1.1 Basics of a Meal Plan 23 3.1.2 Finding an Initial Solution 24 3.1.3 Backtracking Adaptive Threshold Accepting (BATA) 25 3.1.4 Scoring 30 3.2 Group Preference Model 34 3.2.1 Nash Bargaining Solution 34 3.2.2 Preference Scoring 35 3.3 Negotiation Module 37 Chapter 4 Implementation and Results 40 4.1 Implementation 40 4.2 Results 41 Chapter 5 Conclusions and future work 49 References 52 Appendix 58

    [1] Leung, P. S., Wanitprapha, K., and Quinn, L., “A recipe-based, diet-planning modelling system“, British Journal of Nutrition 74:02, 151, 1995

    [2] Chang, D. M., Wu, F. C., and Liu., F., “Functions for choosing menu using fuzzy inference in diet-consultation system”, Nutritional Sciences Journal, vol. 29, no.1, pp. 59-71, 2004

    [3] Youbo Lv, “Multi-Objective Nutritional Diet Optimization Based on Quantum Genetic Algorithm”, Fifth International Conference on Natural Computation, 2009

    [4] Mino, Y. and Kobayashi, I., “Recipe Recommendation for a Diet Considering a User’s Schedule and the Balance of Nourishment”, Intelligent Computing and Intelligent Systems (ICIS), IEEE International Conference, 2009

    [5] Pei, Z. and Liu, Z., “Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm” International Conference on Computational Intelligence and Natural Computing, 2009

    [6] Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M., “Combining Content-based and Collaborative Filtering in an On-Line Newspaper”, Proceedings of the ACM SIGIR’99 Workshop on Recommender Systems: Algorithms and Evaluation, University of California, Berkeley, August 1999

    [7] Balabanovic, M. and Shoham, Y., “Combining Content-based and Collaborative Recommendation”, Communication of the ACM, March 1997

    [8] Gaschnig, J., “Performance Measurement and Analysis of Certain Search Algorithms”, Ph.D. Diss., Dept. of Computer Science, Carnegie Mellon University, 1979

    [9] Mohr, R. and Henderson, T. C., “Arc and Path Consistency Revisited”, Artificial Intelligence 28:225-233, 1986

    [10] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing”, Science. New Series 220 (4598): 671–680, doi:10.1126/science.220.4598.671, ISSN 00368075, 1983-05-13

    [11] Vilcot, G. and Billaut, J.-C., “A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem”, European Journal of Operational Research, 190(2): p. 398-411. 2008

    [12] Dorigo, M. and Gambardella, L.M., “Ant colonies for the traveling salesman problem”, BioSystems, 43: p. 73-81. 1996

    [13] Kennedy, J. and Eberhart, R., “Particle Swarm Optimization”, Proceedings of IEEE International Conference on Neural Networks, IV. pp. 1942-1948, 1995

    [14] Dueck, G. and Scheuer, T., “Threshold Accepting: a general purpose optimization algorithm appeared superior to simulated annealing”, Journal of Computational Physics, Vol. 90, pp. 161-175, 1990

    [15] Tarantilis, C.D. and Kiranoudis, C.T., “A meta-heuristic algorithm for the efficient distribution of perishable foods” Journal of Food Engineering, Vol. 50, pp. 1-9, 2001

    [16] Lin, C. K. Y., Haley, K. B., and Sparks, C., “A Comparative Study of Both Standard and Adaptive Versions of Threshold Accepting and Simulated Annealing Algorithms in Three Scheduling Problems”, European Journal of Operational Research, Vol. 83, pp. 330-346, 1995

    [17] Gaertner, W., “A Primer in Social Choice Theory”, Oxford University Press, 2006

    [18] Leung, P. S., Miklius, W., Wanitprapha, K., Garrod, P., and Johnson, N., “Minimum-cost palatable diet: a pilot study”, Agricultural Systems 38, 275-299, 1992

    [19] 蘇木春,張孝德著:“機器學習-類神經網路、模糊系統以及基因演算法則”台北:全華書局,民國88年

    [20] Acampora, G. and Loia, V., “Using FML and fuzzy technology in adaptive ambient intelligence environments”, International Journal of Computational Intelligence Research, vol. 1, no. 2, pp. 171-182, 2005

    [21] Cheng, C. H. and Soo, V. W., “Multi-Agent Recommendation Systems Based on Group Preferences”, In Proc. of PRIMA2003. (MOE Program for Promoting Academic Excellence of Universities under the grant number 89-E-FA04-1-4.), 2003

    [22] Liang, S. H. and Soo, V. W., “Recommending a Trip Plan by Negotiation with a Software Travel Agent”, Master's Thesis, Tsinghua University, 2001

    [23] Huang, C. C., Huang, T. E., and Soo, V. W., “Recommending a Personalized Lesson Plan based on Constraint Satisfaction and Negotiation”, International Conference on Education Technology and Computer, 2010

    [24] Freyne, J., Berkovsky, S., “Intelligent Food Planning: Personalized Recipe Recommendation“, International Conference on Intelligent User Interfaces, Hong Kong, China, 2010

    [25] Lyu, L. C., Ho, J. Y., Chang, F. H., and Hsu, I L., “An integrated database management system for Taiwanese food composition and related dietary assessment databases: The NUFOOD system”, Nutritional Sciences Journal, vol. 26, no.4, pp. 268-276, 2001
    [26] Bulka, J., Izworski, A., Koleszynska, J., Lis, J., and Wochlik, I., “Automatic meal planning using artificial intelligence algorithms in computer aided diabetes therapy”, Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, Feb 10-12, 2009

    [27] Wang, M. H., Lee, C. S., Hsieh, K. L., Hsu, C. Y., and Chang, C. C., “Intelligent Ontological Multi-Agent for Healthy Diet Planning”, Fuzzy Systems, FUZZ-IEEE, Korea, 2009

    [28] recipe resources from network:
    http://www.ytower.com.tw/recipe/recipe.asp
    http://food.doh.gov.tw/FOODNEW/library/CookBook.aspx
    http://quotes.naif.org.tw/meat/htm/recipe.htm
    http://homepage.vghtpe.gov.tw/~meta/hospital/teach1.htm
    http://www.ncku.edu.tw/~dons/new_page_4.htm
    http://e-learning.housingauthority.gov.hk/HAELP/info/business/health/03/03.3/03.3.htm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE