研究生: |
劉愷寧 Liu, Kai-Ning |
---|---|
論文名稱: |
互補式鍺通道鰭式電晶體之研究 Study of Ge CMOS Fin Field-Effect Transistors on SOI substrate |
指導教授: |
吳永俊
Wu, Yung-Chun 葉沐詩 Yeh, Mu-Shih |
口試委員: |
李耀仁
Lee, Yao-Jen 林育賢 Lin, Yu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 互補式電晶體 、鍺 、矽電晶體結構在絕緣體之上 |
外文關鍵詞: | CMOS, Germaium, SOI |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
年來,半導體產業的興起帶動了電子產業市場的發展。現代的電子產品被要求多功能、體積小和操作速度快等能力。在此驅動力下,電子產品中的電晶體必須不斷的微縮及高密度以符合電子產業的需求。然而,傳統的電晶體微縮會遇到許多物理極限的挑戰像是導通電流不足夠提升電晶體效能.因此,許多學者提出用高載子遷移率材料來取代原本的矽通道。
在本篇論文中,提出了互補式鍺通道鰭式電晶體在絕緣的矽基板上,能應用在未來次7奈米互補式電晶體技術。利用減壓化學氣象沉積法將厚鍺層成長於矽基板上當作通道來提升載子的遷移率。在完成N型和P型反轉式鍺鰭式電晶體後,利用鋁銅金屬線連接N型和P型集極端來形成鍺的互補式電晶體。在基礎元件特性分析中,第一部分分析N型和P型鍺鰭式電晶體的電性,可以發現N型和P型鍺鰭式電晶體具有較為接近對稱的電特性,適合應用於互補式電晶體電路。第二部分分析互補式鍺通道鰭式電晶體的電性,互補式鍺通道鰭式電晶體具有良好的反轉特性,並且在0.8V工作電壓下可以得到一個較大的電壓增益51.4V/V 。
此篇研究中提出互補式鍺通道鰭式電晶體在絕緣的矽基板上有良好的電特性,因此有機會可以應用在未來次7奈米互補式電晶體技術和三維積體電路上。
Recently, the rise of semiconductor industry is driving the development of electrical industrial market. Modern electronic devices are required to have multifunctional, small size, fast operating speed, etc. Under this driving force, transistors need scaling down continuously and high density to fit the demand for the electronics industry. However, the conventional transistors face a lot of physical challenges such as conductive current not enough to improve transistor performance when they scale down. Therefore, many scholars present using high carrier mobility materials instead of silicon channel.
In this thesis, we successfully demonstrate Germanium complementary metal–oxide–semiconductor(CMOS) on Silicon on Insulator(SOI) substrate. The thick Germanium layer which was deposited on silicon substrate by reduced-pressure chemical vapor deposition (RP-CVD) as channel improve carrier mobility. After n-type and p-type Germanium IM-FinFETs was done, the two drain terminals which are respectively n-type and p-type Germanium IM-FinFETs were connected by AlCu metal lines to from Germanium CMOS. In the basic device characteristics analysis, n-type and p-type Germanium IM-FinFETs on SOI substrate were measured in the first part. The closed symmetrical electrical characteristics indicated that Germanium IM-FinFETs on SOI substrate have potential in CMOS circuits. In the second part, Germanium CMOS on SOI substrate were measured. The results exhibit that Germanium CMOS on SOI substrate have good complementary characteristic and obtain the maximum voltage gain which is 51.4V/V at VDD of 0.8 V.
As a result, we proposed Germanium CMOS on SOI substrate have good electrical characteristics. Additionally, the Germanium CMOS on SOI substrate are highly promising candidate for future sub-7nm CMOS technology and 3D IC applications.
Reference
Chapter 1
[1-1] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, pp. 82-85, 1965.
[1-2] Heng Wu, Student Member, IEEE, Peide D. Ye, Fellow, IEEE, “Fully Depleted Ge CMOS Devices and Logic Circuits on Si,” IEEE Transactions on Electron Devices, Vol. 63, No. 8, August 2016.
[1-3] R Jammy, “Life beyond Si: More Moore or More than Moore?,” Integrated Reliability Workshop Final Report (IRW), 2010 IEEE International, 2010.
[1-4] S. Takagi, R. Zhang, J. Suh, S. H. Kim, M. Yokoyama, K. Nishi, and M. Takenaka, “III–V/Ge channel MOS device technologies in nano CMOS era,” Japanese Journal of Applied Physics, 54, 06FA01, 2015.
[1-5] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Transactions on Electron Devices, Vol. 55, No. 1, January 2008.
[1-6] C. T. Chung, C. W. Chen, J. C. Lin, C. C. Wu, C. H. Chien, and G. L. Luo, “First Experimental Ge CMOS FinFETs Directly on SOI Substrate,” Electron Devices Meeting (IEDM), 2012, pp. 383–386.
[1-7] H. Wu, W. Wu, M. Si, and P. D. Ye “First Demonstration of Ge Nanowire CMOS Circuits: Lowest SS of 64 mV/dec, Highest gmax of 1057 µS/µm in Ge nFETs and Highest Maximum Voltage Gain of 54 V/V in Ge CMOS inverters”, Electron Devices Meeting (IEDM), pp. 2.1.1-2.1.4, 2015.
[1-8] Y. Nakakita, R. Nakane, T. Sasada, M. Takenaka, and S. Takagi, “Interface-Controlled Self-Align Source/Drain Ge p-Channel Metal–Oxide–Semiconductor Field-Effect Transistors Fabricated Using Thermally Oxidized GeO2 Interfacial Layers”, Japanese Journal of Applied Physics, , vol. 50, no. 1, pp. 010109-1–010109-7,Jan. 2011.
Chapter 2
[2-1] J. E. Lilienfeld, "Amplifier for Electric Current," U.S. Patent 1 877 140, Sep., 1932.
[2-2] J. E. Lilienfeld, "Device for Controlling Electric Current," U.S. Patent 1 900 018, Mar.,1933.
[2-3] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, “A History of the Invention of the Transistor and Where It Will Lead Us,” IEEE Journal of, vol. 32, pp. 1858–1865, 1997.
[2-4] Arns RG, “The other transistor: early history of the metal-oxide semiconductor field-effect transistor,” Engineering Science and Education Journal, J.7:, pp. 233–240, October 1998.
[2-5] Donald A. Neamen, semiconductor physics and devices: Basic Principles, ch. 10, 2012.
[2-6] TCAD Sentaurus Device, Synopsys SDevice Ver.J-2014.09, Synopsys, Inc., Mountain View, CA, USA
[2-7] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, 2003.
[2-8] International Technology Roadmap for Semiconductor Industry Association, 2015 update.
[2-9] G. D. Wilk, Wallace, and J. M. Authony, “High-k gate dielectrics : Current status and materials properties,” Journal of Applied Physics., Vol.89, pp.5243-5275, May 2001.
[2-10] C. Hu, Modern semiconductor devices for integrated circuits: Prentice Hall, ch. 6, 2010