簡易檢索 / 詳目顯示

研究生: 黃元利
Yuan-Li Huang
論文名稱: 具電磁波防護特性之矽氧烷/聚胺基甲酸酯奈米複合材料之製備及其特性之研究
Study on the preparation and properties of Siloxane/Poly(urea-urethane) nanocomposite materials for electromagnetic interference shielding
指導教授: 黃大仁
Ta-Jen Huang
馬振基
Chen-Chi M. Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 150
中文關鍵詞: 矽氧烷/聚氨基甲酸酯導電性抗電磁波碳奈米管
外文關鍵詞: Poly (urea-urethane), electrical properties, EMI, carbon nanotube
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在合成Siloxane為軟鏈段(Soft segment)之矽氧烷/聚氨基甲酸酯樹脂,並藉由添加導電填充物,研發具導電性的矽氧烷/聚氨基甲酸酯樹脂。本實驗先合成Polydimethylsiloxane(PDMS)-
    Poly(urea-urethane)[PUU]系統的高分子材料,其中反應檢測是利用FT-IR對NCO group拉伸吸收峰的變化來進行,再利用摻混的方式加入不同導電填充物,並探討導電填充物對所選用的矽氧烷/聚胺基甲酸酯在電學性質上的影響。
    材料經由表面電阻值測試後,發現碳黑(CB)添加量為20phr時,Aluminum-contacting side 和 Air-contacting side 的電阻分別由原本的1.18×1015Ω/cm2和1.33×1015Ω/cm2降至5.91x106 Ω/cm2和9.20x106 Ω/cm2,而以碳奈米管(CNT)當作導電填充物時,添加量僅5phr時,Aluminum-contacting side和 Air-contacting side的表面電阻就分別可降至2.44x107Ω/cm2和3.96x107 Ω/cm2。由微觀性質的分析發現,由於碳管具有相當高的長徑比(aspect ratio),容易形成良好的導電通路,又因鬚狀物質尖端處,表面電子密度會高於普通球狀粒子,由於電子的大量集中,會造成絕緣之介質被擊穿,而有導電的現象,因此比碳黑更能降低PUU薄膜的表面阻抗值。
    本研究中,我們將利用CNT的高aspect ratio及電子集中的特性,配合金屬的低阻抗,在PUU薄膜內,形成一網狀且電子移動速度快的導電通路,來增加PUU薄膜整體的導電度。
    經由Raman、EDS的証實,酸化之後的碳奈米管,表面具有-COOH官能基的存在,而EDS、XRD、TEM可進一步證實,本研究能將CNT表面披覆上不同金屬 。而將披覆金屬的CNT,添加至PUU樹脂中,含有8phr的CNT-Ni(0.003M),其Aluminum-contacting side的表面阻抗能由1.18×1015Ω/cm2降至5.23x106 Ω/cm2,相同條件下,CNT-Ni(0.0015M)、CNT-Ag(0.003M)、CNT-Ag(0.0015M)則可分別降至5.24x104 Ω/cm2、7.61x104 Ω/cm2、1.41x104 Ω/cm2。
    TGA結果顯示,不論含CB、CNT、CNT-Ag、CNT-Ni的複合材料熱性質皆有顯著改善,故添加於PUU中,能提高PUU薄膜整體的熱性質,又在900℃下,上述的填充物其重量損失也僅約10%,所以添加量越多,相對的熱裂解溫度(Td10)也會跟著增高,複合材料的10wt%重量損失溫度,在CB含量為20phr時,由原本的260.4℃上升至280.6℃。
    對添加導電填充物的PUU薄膜進行電磁波遮蔽測試,發現當CB含量為20phr時,EMI shielding effectiveness僅約1.5dB,在CNT為5phr時,約有3dB的遮蔽值,不過以相同比例的CNT填充量來看,較高頻的電磁波下,具有較佳的遮蔽效果,含量為5phr的PUU/CNT薄膜,在頻率為400MHz下,其遮蔽效果約1dB,但在1300MHz下,就約有4dB的遮蔽效果。相同條件下,PUU薄膜厚度增加為2倍時,頻率為1200MHz時,電磁波遮蔽效果也從原來的4dB增至8dB,因材料的厚度增厚,電磁波在材料內部產生多重反射的機會就變多,故電磁波遮蔽的效果就會變佳。
    相同的添加量下,披覆金屬多的CNT,其電磁波遮蔽效果較差,以相同8phr的添加量來比較的話,在頻率為1200MHz下,CNT-Ag(0.003M)此組僅具有1.5dB的遮蔽值,而CNT-Ag(0.0015M)這組,就可達到4dB的遮蔽值,原因為過高的金屬濃度,會將CNT包覆成球狀,使得CNT失去原本的奈米絲狀結構,造成整體表面積減小,電磁波通過材料時所接觸到的導電面減少,多重反射損耗也隨之減少,故通過的電磁波能量就相對較多。相同情形也發生在披覆Ni金屬CNT之composite。如比較Ag和Ni在相同金屬濃度下的組別,我們可發現Ni金屬的組別整體來說會具有較好的電磁波遮蔽效應,這是因為鎳金屬是具有磁性的金屬,能將磁場改變方向,使其不穿透過PUU薄膜,所以說相對於銀金屬,鎳金屬多了將磁場能量轉移方向的能力,故電磁波遮蔽效果會優於銀金屬的組別。
    將添加導電填充物的PUU薄膜進行高頻微波吸收測試,可以發現當CB含量為20phr時,電磁波吸收值隨頻率增加而增加;而CNT含量達3phr以上時,就會在特定的頻率下,產生極明顯的電磁波吸收行為,跟CB相比較,CNT具有在極低含量下產生電磁波吸收效應的優點。當CNT之含量分別為3phr、4phr、5phr時,其在頻率分別為12.31、16.21、15.89(GHz)處,產生8.48、28.40、26.07dB的吸收值。如增加CNT/PUU composite試片厚度,可發現產生電磁波吸收的特定頻率會往低頻處移動。
    當CNT-Ni的含量愈多時,PUU薄膜的電磁波吸收值也越高,且CNT-Ni(0.003M)為filler時,在相同的含量之下,電磁波吸收效應比CNT-Ni(0.0015M)為filler時來的好;不過CNT-Ag的組別,CNT-Ag(0.0015M)為filler時,在相同含量時,PUU薄膜的電磁波吸收值整體會比CNT-Ag(0.003M)為filler時來的高。
    材料的楊氏模數(Young’s modulus)、拉伸應力(Tensile stress)通常會隨無機材料的添加量增加而增加,當CNT的含量增加時,楊氏模數及拉伸應力皆大幅提升,PUU薄膜材料在硬度、剛性上皆遠比添加CB的組別有明顯的增加,CB含量為20phr時,PUU薄膜的楊氏模數、拉伸應力分別從原本的85.64MPa、5.68MPa,提高至119.92Mpa(增加40.0%)和10.16Mpa(增加78.9%),而CNT含量僅為5phr時,楊氏模數及拉伸應力分別可達到146.06Mpa(增加70.6%)和15.75Mpa(177.3%)。經由比較CB和CNT含量對PUU機械強度的影響。可發現有機相與無機相的接觸面積越大,對其機械強度的提昇越明顯。


    Poly (urea-urethane) (PUU) with polydimethylsiloxane (PDMS) soft segment was synthesized successfully in this study. Conductive filler was used to increase the conductivity of poly (urea-urethane). FT-IR was utilized to monitor the reaction of tolune diisocyanate (TDI) and PDMS. Different types of conductive fillers, namely, carbon black (CB), carbon nanotube (CNT), silver coated carbon nanotubes (CNT-Ag) and nickel coated carbon nanotubes (CNT-Ni) were blended with PUU to form partially conductive polymer composites. The effect of conductive fillers on electrical properties of composites was investigated in this research.

    Surface electrical resistance properties of the PUU films have been studied by measuring the surface electrical resistance. Results show that when the carbon black(CB) content reaches 20 phr, surface resistance of aluminum-contacting side and air-contacting side decreased from 1.18x1015 Ω/cm2 and 1.33x1015 Ω/cm2 to 5.91x106 Ω/cm2 (decreased 9 orders)and 9.20x106 Ω/cm2(decreased 9 orders), respectively. However, when the carbon nanotube content was only 5phr, surface resistance of aluminum-contacting side and air-contacting side decreased to 2.44x107 Ω/cm2 (decreased 8 orders) and 3.96x107 Ω/cm2(decreased 8 orders), respectively. Due to the high aspect ratio of carbon nanotubes, it forms better conductive network than that of carbon black particle. Generally speaking, this electrical resistance performance could be applied to antistatic and ESD materials for military applications at some middle or high relative humidity.
    In this study, highly conductive metal such as silver or nickel were used to improve the conductivity of carbon nanotubes. The acid-treated carbon nanotubes posses carbonyl group on the surface of CNT, which was characterized by FT-IR spectra、EDS and Raman spectra. Silver or nickel then were coated on the surface of carbon nanotubes via oxidation-reduction reaction. The characterization was performed by EDS、XRD and TEM. Results indicate that the surface resistance of poly(urea-urethane) filled with nickel-coated (0.003M) carbon nanotubes (CNT-Ni-0.03M) in the aluminum-contacting side is 5.23x106 Ω/cm2,and three that of CNT-Ni-0.0015M、CNT-Ag-0.003M、CNT-Ag-0.0015M are 5.24x104 Ω/cm2、7.61x104 Ω/cm2、1.41x104 Ω/cm2, respectively.

    TGA results showed that introducing inorganic conductive filler (carbon black, carbon nanotube, CNT-Ag, CNT-Ni) into PUU can increase the thermal stability of PUU. For example, the 10% weight loss of PUU increased from 260.4℃ to 280.6℃ when 20 phr (part per hundred percent resin) of carbon black was added to poly(urea-urethane).

    Conductivity on PUU with different conductive filler was conducted with EMI shielding effectiveness of PUU. When the CB content reached 20 phr, the EMI shielding effectiveness of composite is 1.5dB. However, composite with 5 phr CNT content exhibited 3 dB. If the testing was performed at high frequency electromagnetic wave, the EMI shielding effectiveness of composite would be increased. For example, PUU/CNT composite presented 1dB of EMI shielding effectiveness in the 400MHz and 4dB in the 1300MHz when the filler content is 5 phr. The film thickness of composite also affects the EMI shielding effectiveness of composite. The EMI shielding effectiveness of PUU/CNT composite increased from 4 dB to 8 dB as the film thickness double since the reflective absorptions inner the composite increases.

    Carbon nanotubes coated with more metal exhibit worse EMI shielding effectiveness. The EMI shielding effectiveness of CNT-Ag-0.003M is 1.5 dB, but CNT-Ag-0.0015M is 4dB. Excess metal on the surface of carbon nanotubes will not only encapsulate the carbon nanotubes but also aggregate together with other metal-coated carbon nanotubes, that reducing the network structure and surface area of carbon nanotubes. The electromagnetic wave goes through composite and with few reflective adsorptions. Nickel metal shows higher EMI shielding effectiveness than that of silver, since it is a magnetic metal and it possesses better ability to shield the magnetic field than silver does. Increasing the content of CNT-Ni would raise the magnetic field shielding effectiveness of composite. However, CNT-Ag have not ability to shield the magnetic field. So composite with CNT-Ni-0.0015M shows better EMI shielding effectiveness than that with CNT-Ni-0.003M. The same result can be seem from the system of silver-coated carbon nanotubes.

    Electromagnetic absorption of composite increases with the increasing of electromagnetic wave frequency when the carbon black content is 20 phr and carbon nanotubes content is 3 phr. Carbon nanotubes provide the ability of electromagnetic absorption to the composite at low filler content. When the filler contents are 3phr、4phr、5phr, the PUU/CNT composite posses EMI shielding effectiveness at 8.48 dB、28.40dB and 26.07dB as the electromagnetic wave frequencies are 12.31 GHz、16.21 GHz and 15.89 GHz, respectively. However, the thickness of PUU/CNT composite was increased, the specific electromagnetic absorption peaks of composite shift to lower values.

    The Young’s modulus and tensile stress of poly(urea-urethane) increase significantly with the increasing of carbon nanotubes content. When the carbon nanotubes content reaches 8 phr, the Young’s modulus were from 85.64Mpa to 146.06MPa(an increase of 70.6%)and tensile stress were from 5.68MPa to 15.57Mpa(an increase of 177.3%), respectively. When the carbon black content reaches 20 phr, the Young’s modulus were from 85.64Mpa to 119.92Mpa (an increase of 40.0%)and tensile stress were from 5.68MPa to 10.16Mpa(an increase of 78.9%), respectively. Results also show that PUU reinforced by carbon nanotubes possesses better mechanical properties increased than the carbon black ones.

    目錄 中文摘要……………………………………………………………I 英文摘要……………………………………………………………V 謝誌…………………………………………………………………X 目錄…………………………………………………………………XI 圖目錄………………………………………………………………XIV 表目錄………………………………………………………………XVIII 第一章、 緒論……………………………………………………1 第二章、 文獻回顧與理論基礎…………………………………5 2.1電磁波之來源…………………….………………..………..5 2.2電磁波之干擾及危害………………….………………..…..5 2.3電磁干擾遮蔽理論…………………..………………...…….8 2.4電磁波遮蔽材料……………………………………………..10 2.4.1遮蔽材料之選擇……………..…………...…………….10 2.4.2遮蔽材料之分類……….………………..…………........11 2.4.3 高分子導電複合材料…………………………………13 2.5EMI相關文獻回顧…………………..…….….……………...15 2.6奈米材料……………………………..…….……………..….23 2.6.1碳材的特性與導電機制………………..……………...24 2.6.2碳黑及碳纖維的EMI特性…………..…………….….25 2.6.3碳奈米管起源…………………………………….……29 2.6.4碳奈米管結構………………………………….………30 2.6.5碳奈米管性質……………………………….……..…..32 2.6.6高分子/碳奈米管複合材料……………………………33 2.7聚胺酯介紹……………………………………….…………..34 2.7.1 Isocyanate基礎反應……………………………………35 2.7.2 Isocyanate的衍生反應………………………………….37 2.7.3聚胺酯的結構與性質…………………………………...38 2.7.4含矽(Si)PU的合成與性質討論………………………....41 第三章、研究目的與內容……………………………………………44 3.1 研究目的………………………………………………………44 3.2研究內容…………………………………………………….….44 第四章、實驗材料、設備及實驗方法…………………………….…48 4.1實驗藥品………………………………………………………48 4.2實驗儀器………………………………………………………49 4.3實驗流程………………………………………………………51 4.3.1 流程圖………………………………..………..….51 4.3.2 PDMS為主鏈之Poly(urea-urethane)的製備………..52 4.3.3鍍金屬之碳奈米管的製備方法…………………………54 4.3.4 Conductive fillers/PDMS base PUU複合材料之製備55 4.4測試方法………………………………………..……………55 第五章、結果與討論…………………………………………….……61 5.1 FT-IR圖譜分析………………………….………………61 5.2 Raman結構鑑定…………………………………...……68 5.3 XRD結構鑑定…………………………..……….………71 5.4 EDX元素分析………………………….......…….…75 5.5 TEM型態學………………………………..…………….82 5.6 SEM型態學…………………………………….………..84 5.7 TGA熱性質分析………………………………....……......…87 5.8表面阻抗分析……………………………...….……..99 5.9 EMI分析…………………………………..….………112 5.10高頻微波吸收測試…………………………………...124 5.11機械性質分析………………………………………….134 第六章、結論……………………………………………..….….…141 第七章、參考文獻…………………………………….……………146 圖目錄 Fig.1-1 Classification of EMC……………………..……….…1 Fig.2-1 Composition of electromagnetic wave…………...…5 Fig.2-2 Various electrical products and frequency spectrum of electromagnetic wave………………………………….….....7 Fig.2-3 Attenuation of an Electromagnetic wave by a shield………............................................10 Fig.2-4 Surface resistivity spectrum………..……….…..11 Fig.2-5 Classification of EMI shielding materials………12 Fig.2-6 混入相同體積分率的粒狀填充料和纖維狀填充料在樹脂中之分散狀態………………………………………….........….…15 Fig.2-7 The effect of workload on SE of ENCF/ABS composites compounding at 220℃……………………...…..…16 Fig.2-8 EMI shielding effectiveness of various metal-coated carbon fiber reinforced ABS composites………….…17 Fig.2-9 Volume resisitivity against conductive filler and carbon fiber loading for NR and EVA based composites…………….................................….18 Fig.2-10 Shielding effectiveness at 100 and 2000 MHz as a function of filler loading for SCF filled composites……18 Fig.2-11 Effect of activator type on the EMI shielding effectiveness............................................20 Fig.2-12 EMI SE ,absorbance and reflection of PET fabric/Ppy composites with various specific volume resistivities….….......................................22 Fig.2-13 Structure of graphite……………………………….24 Fig.2-14 Structure of carbon black…………………………25 Fig.2-15 三種不同聚集程度的碳黑大小…………………………25 Fig.2-16 碳黑的構造複雜程度與電子傳遞途徑示意圖…….…….26 Fig.2-17 Electrical conductivity vs fiber volume fraction27 Fig.2-18 SEM fracto-graphs of cement/carbon fiber composite.................................................28 Fig.2-19 單層碳管……………………………………………….….30 Fig.2-20 多層奈米碳管………………………………………………30 Fig.2-21 具開口端之無缺陷單層奈米碳管(SWNT)示意圖…….….31 Fig.2-22 The urethane link………………………………….….34 Fig.2-23 Hard segment and soft segment of Polyurethane…39 Fig.2-24 Hard and soft segment phase of PU………..………40 Fig.4-1 實驗流程圖………………………………………………..51 Fig.4-2 Mechanism of nickel or silver coated CNT……….54 Fig.4-3 電絕緣性質測試儀(清大化工系複合材料研究室)………57 Fig.4-4 EMI SE量測裝置頻譜儀and同軸管(大同材料所黃繼遠教授實驗室)……………………………………………..….…58 Fig.4-5 HP8722ES及Damaskos free space 反射損失量測設備(中山科學院高分子研究所)………………………………..…..…59 Fig.4-6 啞鈴型試片大小及外觀………………………..….…..60 Fig.5-1 Characterization FT-IR peaks on PDMS-DMPA system for preparing Poly(urea-urethane).……………………………63 Fig.5-2 FT-IR spectra of the PDMS2500-DMPA based Poly(urea-urethane) systems at various reaction times……....67 Fig.5-3 Raman spectrum and SEM image of purified SWNTs.…...…..................................................68 Fig.5-4 Raman spectrum of pure Carbon nanotube………..70 Fig.5-5 Raman spectrum of CNT-COOH…………………………70 Fig.5-6 XRD patterns of (A) synthetic graphite, (B) BDH activated Carbon(from BDH Co.), (C)MWCNT/ purified, and (D)MWCNT/contamination samples…………………………71 Fig.5-7 XRD patterns of carbon nanotube…………………..72 Fig.5-8 X-ray diffraction patterns of metal-coated carbon fibers: (a)electroless nickel deposits, (b) cementation nickel deposits,(c) electroless copper deposits, and (d) cementation copper deposits……………………………………73 Fig.5-9 XRD patterns of Ni-coated CNT………………...74 Fig.5-10 XRD patterns of Ag-coated CNT……………………74 Fig.5-11 Schematic drawing of an SWNT containing carboxylic acid groups at entry ports to the nanotubes…75 Fig.5-12 EDX analysis of Cu-coated fly-ash cenosphere particles show the presence of Cu as a major element on the particles surface successful Cu coating of fly-ash cenosphere particles………………………………………………76 Fig.5-13 The EDS spectrum of pure CNT………….……….….77 Fig.5-14 The EDS spectrum of CNT-COOH…………….….…..…77 Fig.5-15 The EDS spectrum and mapping of CNT-Ag(0.0015M)…….....................................................78 Fig.5-16 The EDS spectrum and mapping of CNT-Ag(0.003M)…….................................................. 79 Fig.5-17 The EDS spectrum and mapping of CNT-Ni(0.0015M)……....................................................80 Fig5-18 The EDS spectrum and mapping of CNT-Ni(0.003M)…….....................................................81 Fig.5-19 The TEM microphotographs of (a)MWCNT, (b)MWCNT-COOH,(c)MWCNT-Ag,(d)MWCNT-Ni……...............83 Fig.5-20 The SEM microphotographs of carbon nanotube……84 Fig.5-21 The SEM microphotographs of (a)CNT-Ni(0.0015M) (b)CNT-Ni(0.003M) (c)CNT-Ag(0.0015M) (d)CNT-Ag(0.0015M).....85 Fig.5-22 The SEM microphotographs of PUU/CNT (a)1phr (b)2phr (c)3phr (d)4phr (e)5phr…………………………………86 Fig.5-23 TGA curves of PUU, DMPA, PDMS and differentiation curve of the figure……………………………………………….88 Fig.5-24 TGA curves of carbon black/PUU composite with various contents of carbon black………………………………89 Fig.5-25 TGA curves of carbon nanotube/PUU composite with various contents of carbon nanotube……………………….….90 Fig.5-26 TGA curve of CNT-metal nanocomposites with various concentration of metalcomplex………………………92 Fig.5-27 TGA curves of CNT-Ag(0.003M)/PUU nanocomposite with various CNT-Ag(0.003M) contents…………………………..95 Fig.5-28 TGA curves of CNT-Ag(0.0015M)/PUU nanocomposite with various CNT-Ag(0.0015M) contents…………………………96 Fig.5-29 TGA curves of CNT-Ni(0.003M)/PUU nanocomposite with various CNT-Ni(0.003M)contents…………………………...97 Fig.5-30 TGA curves of CNT-Ni(0.0015M)/PUU nanocomposite with various CNT-Ni(0.0015M) contents…………………………98 Fig.5-31 Surface resistance of PDMS based Poly(urea-urethane) with various Carbon black contents………..……102 Fig.5-32 Surface resistance of PDMS based Poly(urea-urethane) with various Carbon nanotubes contents…………103 Fig.5-33 Surface resistance of PDMS based Poly(urea-urethane)with various CNT-Ni contents………………………108 Fig.5-34 Surface resistance of PDMS based Poly(urea-urethane) with various CNT-Ag contents……………………111 Fig.5-35 EMI shielding effectiveness of PUU/CB nanocomposite with various CB contents……………………113 Fig.5-36 EMI shielding effectiveness of PUU/CNT nanocomposite with various CNT contents………………….115 Fig.5-37 EMI shielding effectiveness of PUU/CNT nanocomposite with various CNT contents……………….…115 Fig.5-38 EMI shielding effectiveness of PUU/CNT-Ag(0.003M) composite with various CNT-Ag(0.003M) contents…………117 Fig.5-39 EMI shielding effectiveness of PUU/CNT-Ag(0.0015M) composite with various CNT-Ag(0.0015M) contents………...118 Fig.5-40 The magnetic field is incidented on the slant at surface of the magneticmaterials…………………………….120 Fig.5-41 EMI shielding effectiveness of PUU/CNT-Ni(0.003M) composite with various CNT-Ni(0.003M) contents………..122 Fig.5-42 EMI shielding effectiveness of PUU/CNT-Ni(0.0015M) composite with various CNT-Ni(0.0015M) contents……….122 Fig.5-43 Electromagnetic absorpsion loss of PUU with various CB contents……………….......…………………………………125 Fig.5-44 Electromagnetic absorpsion loss of PUU with various CNT contents…………………………………………………126 Fig.5-45 Electromagnetic absorpsion loss of PUU with various CNT contents…………………………………………………127 Fig.5-46 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.003M)contents………………………………….129 Fig.5-47 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.0015M)contents………………………………….130 Fig.5-48 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.003M)contents………………………………….132 Fig.5-49 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.0015M) contents……………………………….132 Fig.5-50 Tensile strength of PUU/CB or CNT nanocomposite with various filler contents……………………………..…136 Fig.5-51 Young’s modulus of PUU/CB or CNT nanocomposite with various filler contents……………………………………136 Fig.5-52 Tensile strength of PUU/CNT-metal nanocomposite with various filler contents………………………………..140 Fig.5-53 Young’s modulus of PUU/CB or CNT nanocomposite with various filler contents………………………………….140 表目錄 Table 2-1 不同dB值所代表之遮蔽效果………………..………..…8 Table 2-2 Electromagnetic interference shielding effectiveness (dB) at1~2 GHz of PES-matrix composites with various fillers…........................................14 Table 2-3 EMI SE ,Ab ,RC ,Tr ,of the PET fabric/PPy composites with various specific volume resistivities……21 Table2-4 EMI shielding effectiveness of various composite materials……………………………………………….........…23 Table2-5 碳管的物理性質………………………………..…..32 Table 2-6 為碳管與傳統材料的機械強度比較………………….32 Table 5-1 FT-IR peaks on PDMS based Poly(urea-urethane)…64 Table5-2 10%weight loss temperature of carbon black/PUU with various carbon black contents…………………89 Table5-3 10%weight loss temperature of carbon nanotube/PUU with various CNT contents……………………………………….91 Table5-4 Weight distribution proportion of CNT and Metal of theoretical value and experimental value with various concentration of metal…………………….……………….…..92 Table 5-5 Proportion of CNT and Metal complex in PUU of theoretical value and experimental value with various CNT-metal contents……………………………………………..…...93 Table5-6 10%weight loss temperature of CNT-Ag(0.003M)/PUU with various CNT-Ag(0.003M) contents…………………………95 Table5-7 10%weight loss temperature of CNT-Ag(0.0015M)/PUU with various CNT-Ag(0.0015M) contents……….…96 Table5-8 10%weight loss temperature of CNT-Ni(0.003M)/PUU with various CNT-Ni(0.003M) contents………………………….97 Table5-9 10%weight loss temperature of CNT-Ni(0.0015M)/PUU with various CNT-Ni(0.0015M) contents……………………...…98 Table5-10 Air and aluminum contacting surface resistance of Carbon black/PUU composite with various filler contents…101 Table5-11 Air and aluminum contacting surface resistance of Carbon nanotubes/PUU composite with various filler contents...............................................103 Table5-12 Air and aluminum contacting surface resistance of CNT-Ni(0.003M)/PUU composite with various filler contents………………………… ..…………………......….107 Table5-13 Air and aluminum contacting surface resistance of CNT-Ni(0.0015M)/PUU composite with various filler contents………………………………………………....…...107 Table5-14 Air and aluminum contacting surface resistance of CNT-Ag(0.003M)/PUU composite with various filler contents…………………………………………....……...….110 Table5-15 Air and aluminum contacting surface resistance of CNT-Ag(0.0015M)/PUU composite with various filler contents…………………………………………………........110 Table 5-16 EMI shielding effectiveness of PUU/CB nanocomposite with various CB contents at 400MHz and 1300MHz…….….........................................114 Table 5-17 EMI shielding effectiveness of PUU/CNT composite with various CNT contents and thickness at 400MHz and 1300MHz……………………………………......……….….116 Table 5-18 EMI shielding effectiveness of PUU/CNT-Ag(0.003M) composite with various CNT-Ag(0.003M) contents at 400MHz and 1300MHz……………………...........……………118 Table 5-19 EMI shielding effectiveness of PUU/CNT-Ag(0.0015M) composite with various CNT-Ag(0.0015M) contents at 400MHz and 1300MHz…………………………….......……119 Table 5-20 EMI shielding effectiveness of PUU/CNT-Ni(0.003M) composite with various CNT-Ag(0.003M) contents at 400MHz and 1300MHz………………………………..........…123 Table 5-21 EMI shielding effectiveness of PUU/CNT-Ni(0.0015M) composite with various CNT-Ni(0.0015M) contents at 400MHz and 1300MHz………………………….......………123 Table 5-22 Electromagnetic absorpsion loss of PUU with various CB contents at 10GHz and the frequency of Max absorpsion loss…………………………………………………125 Table 5-23 Electromagnetic absorpsion loss of PUU with various CNT contents and thickness at 10GHz and the frequency of Max absorpsion loss………………………..128 Table 5-24 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.003M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….130 Table 5-25 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.0015M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….131 Table 5-26 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.003M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….133 Table 5-27 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.0015M) contents at 10GHz and the frequency of Max absorpsion loss………………………………….…133 Table5-28 Tensile properties of PUU/CB composite with various filler contents……………………………………………135 Table5-29 Tensile properties of PUU/CNT nanocomposite with various filler contents………………………………………135 Table5-30 Tensile properties of PUU/CNT-Ni(0.003M) nanocomposite with various filler contents………………138 Table5-31 Tensile properties of PUU/CNT-Ni(0.0015M) nanocomposite with various filler contents……………..138 Table5-32 Tensile properties of PUU/CNT-Ag(0.003M)nanocomposite with various filler contents………......139 Table5-33 Tensile properties of PUU/CNT-Ag(0.0015M)nanocomposite with various filler contents………………139

    1.沈曉復,新產業EMI/EMC之市場與商機,塑膠資訊,No.21,8.1998
    2.黃仁豪,抗靜電/靜電消散之導電塑膠材料及應用簡介,工業材料,102期,84,6
    3.沈永清, “導電性塑膠材料技術發展介紹”, 化工資訊 9 (1998) p6
    4.岡村迪夫, “淺談電磁干擾”,全華科技圖書公司,民93
    5.天笠啟祐, ”電磁波的夢饜”, 台北巿,創意力文化公司,1997
    6.盧敏彥,“導電塑膠應用---電磁干擾屏蔽”,化工資訊 9(1998)P15
    7.Harry S. Katz, John V. Milewski., Handbook of fillers for plastics, New York :/Van Nostrand Reinhold Co.,/c1987.
    8.九木元豐,工業材料(日),32(10),42(1998)
    9.Li Lin, Chung D.D.L., “Electrical and mechanical properties of electrically conductive polyethersulfone composite”,Composites 25 (1994) p215
    10.Li Lin, Chung D.D.L., “Effect of viscosity on the electrical properties of conducting thermoplastic composites made by compression molding of a powder mixture”, Polymer Composites 14 (1993) p467
    11.CHI-YUAN HUANG, JUI-FEN PAI,” OPTIMUM CONDITIONS OF ELECTROLESS NICKEL PLATING ON CARBON FIBRES FOR EMI SHIELDING EFFECTIVENESS OF ENCF/ABS COMPOSITES”, Eur. Polym. J., Vol. 34, No. 2, pp. 261-267, 1998
    12.Shinn-Shyong Tzeng , Fa-Yen Chang,” EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites”, Materials Science and Engineering A, 302 (2001) 258–267
    13.N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty,” Electromagnetic interference shielding effectiveness of carbon black and carbon fiber filled EVA and NR based composites”, Composites: Part A ,31 (2000) 1069–1081
    14.Hochberg, Arie, Versieck, Johan,” Shielding for EMI and antistatic plastic resins with stainless steel fibers”, Plastics, Additives and Compounding Volume: 3, Issue: 3, March, 2001, pp. 24-28
    15.Eun Gyeong Han, Eun Ae Kim, Kyung Wha Oh ,”Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics”, Synthetic Metals ,123, 469-476(2001)
    16.M.S. Kim, H.K. Kim, S.W. Byun, S.H. Jeong ,” PET fabric /polypyrrole composite with high electrical conductivity for EMI shielding”, Synthetic Metals 126 233–239(2002)
    17.Sihai Wen, D.D.L.Chung,” Electromagnetic interference shielding reaching 70 dB in steel fiber cement”, Cement and Concrete Research 34 (2004) 329–332
    18.賴耿陽,”碳材料化學與工程”,化學工業出版社,1998,p.24~30
    19.Janzen Jay, “Physicochemical characterization of carbon black”, Rubber Chemistry Technology 55 (1982) p.669
    20.John Accorsi, Eduardo Romero, “Defining the attributes that a carbon black must supply-such as color, UV protection, or conductivity is essential to identifying the appropriate grade and proper loading level of the black”, Plastics Engineering 4 (1995) p29
    21.Nobuyuki Ando, “Electrical resistivity of the polymer layers with polymer grafted carbon blacks”, Thin solid films 334 (1998) ,p.182-186
    22.王秀峰, ” 碳纖維增強水泥複合材料的電導性能及其應用”,複合材料學報,第15卷 第3期, 1998年8月 
    23.H. W. Kroto﹐J. R. Heath﹐S﹒C﹒O'Brien﹐R﹒F﹒Curl﹐R﹒E﹒Smalley﹐Nature 1985﹐318﹐162。
    24.S. Iijima, “Helical microtubules of graphitic carbon”, Nature 1991, p.354-356
    25.Heath,Scientific American December 2000 P.65.
    26.Pirio, G. et al., "Fabrication and electrical characteristics of carbon nanotubefield emission microcathodes with an integrated gate electrode" nanotechnology V13 pp1-4 (2002)
    27.馬振基,”奈米材料科技原理與應用”,全華科技圖書公司,2003,12月
    28.T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐J. Phys. Chem. B 2000﹐104﹐p.2794。
    29.A. Hirsch, Angew. Chem. Int. Ed., 41, 1853 (2002).
    30.E. Dujardin﹐T. W. Ebbesen﹐A. Krishnan﹐P. N. Yianilos﹐M. M. J. Treacy﹐Phys. Rev. B 1998﹐58﹐14013。
    31.M. M. J. Treacy﹐T. W. Ebbesen﹐J. M. Gibson﹐Nature 1996﹐381﹐678。
    32.E.Kymakis, “Single-wall carbon nanotube-polymer composites: electrical, optical and structural investigation”, Synthetic metals 55 (2002) 127,p.59-62
    33.徐國財,張立德,”奈米複合材料”,材料科學與工程出版中心,北京化學工業出版社,2000年,12月
    34.J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ, Interscience, New York (1962)
    35.Jae Hyung Park, Ki Dong Park, You Han Bae. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study, Biomaterials 20 (1999) 943-953
    36.C. Hepburn, “Polyurethane elastomers”, Applied Science Publishers LTD (1982).
    37.P. Wright and A. P. C. Cumming, “Solid Polyurethane Elastomers”, Maclaren and Sons, London (1969).
    38.Jerry March, “Advanced Organic Chemistry”, A Wiley-Interscience Publication. (1991)
    39.R. Benrashid, G. L. Nelson. Surface Characterization of Segmented Siloxane-Urethane Block Copolymers, Journal of Applied Polymer Science, Vol. 49, 523-537 (1993)
    40.Parton ,J.E.,Owen ,S.J.T ,”Applied Electromagnetic”,2nd ed., Macmillan publishers,Lodon,1986
    41.Ramo, S. Whinnery,J.R.,”Fields and Waves in Communication Electronics”,2nd ed., Cambridge University Press, Cambridge, England,1986
    42.T.Saito, ”Chemical treatment and modification of multi-walled carbon nanotubes”, Physica B 323(2002)280-283
    43.黃赣麟博士論文,”奈米碳管強化複合材料”,清華大學化學系,2001
    44.Jin Zhang,” Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B 2003, 107, 3712-3718
    45.Clark, R. J. H. Hester, R. E.,” Advances in infrared and Raman spectroscopy.”,Lodon,1986
    46.Freeman, Stanley K. Freeman,” Applications of laser Raman spectroscopy”, New Jersey,1974
    47.Nakamoto, Kazuo,” Infrared and Raman spectra of inorganic and coordination compounds ”,America,1997
    48.Tobin, Marvin Charles,” Laser Raman spectroscopy”,Florida,1982
    49.Gy. Onyestyak,” Equilibrium and dynamics of acetylene sorption in multiwalled carbon nanotubes”, Carbon 41 (2003) 1241–1248
    50.Shinn-Shyong Tzeng , Fa-Yen Chang,” EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites”, Materials Science and Engineering A, 302 (2001) 258–267
    51.Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. J. Am. Chem. Soc. 2001, 123, 10699.
    52.Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates Jr., J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000 , 321, 292.
    53.蔣見超, 黃宣銘,”利用陰離子聚合法將聚苯乙烯接枝於已官能化多壁奈米碳管表面之研究 ”,國立中正大學化學工程研究所,2004
    54.Anya Kuznetsova , “Enhancement of adsorption inside of single-walled nanotubes opening the entry ports”, Chemical Physics Letters ,321, 2000, 292–296
    55.S. Shukla., ”study of mechanism of electroless copper coating of fly-ash cenosphere particles”, Applied surface Science 181,2001,35-50
    56.Ramanzan Benrashid, “Synthesis of New Siloxane Urethane Block Copolymers and Their Properties”, Journal of Polymer Science: Part A Polymer Chemistry, Vol.32, 1847-1865(1994).
    57.謝仁傑碩士論文,”矽氧烷/聚胺基甲酸脂薄膜材料之表面性質、電氣性質、熱性質與機械性質研究及其在表面電荷消散方面的應用”,清華大學化工系,2002
    58.M. G. Kanatzidis, “Chemical and Engineering News”, 36 (1991) p49
    59.Rainer Waser, ”Nanoelectronics and Information Technology”, Wiley-Vch Verlag GmbH & Co.KGaA, Weinheim, Germany, 2003
    60.Buchachenko. A..L ,Frankevich,”Chemical generation and reception of radio- and microwaves”, New York ,1994
    61.Guanghong Lu,”Electrical and shielding properties of ABS resin field with nickel-coated carbon fibers ”, Composite Science and Technology 56,193-200,1996
    62.Jana, P.B.Mallick, ”Electromagnetic interference shielding by carbon fiber-filled polychloroprene rubber composites.”, Composites, 22, 1991,451-455
    63.Baker,Abdelazeez,”Measurements of the Magnex DC characteristics at microwave frequencies.”, J. Mater. Sci.,23,1988,2955-3000
    64.David K. Cheng,李永勳,顏仁鴻譯,”電磁波”,曉園出版社,1992
    65.張立德,牟季美,”奈米材料和奈米結構”,滄海書局,91年6月

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE