簡易檢索 / 詳目顯示

研究生: 柏啟超
Po, Chi-Chao
論文名稱: 二維NAND型快閃記憶體陣列干擾與循環效應研究
A Study of Disturbance and Cycling Effect on 2D NAND Flash Memory Array
指導教授: 金雅琴
King, Ya-Chin
口試委員: 陳映仁
Chen, Yin-Jen
劉怡君
Liu, Yi-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 積體電路設計與製程開發產業碩士專班
Graduate Program in Integrated Circuit Design and Process Development
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: NAND型快閃記憶體干擾效應耐久度可靠度循環效應
外文關鍵詞: NAND Flash, Disturbance, Endurance, Reliability, Cycling Effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快閃型記憶體問世至今超過二十年,在市場迫切的需求下已成為非揮發性記憶體的主流產品,廣泛應用於嵌入式、攜帶式的電子產品之中,其中NAND型快閃記憶體架構為巨量資料儲存的最佳解決方法。由於NAND型快閃記憶體儲存單元密度高,容易受到元件操作干擾,因而造成元件耐久度及資料保存度衰減,寫入及抹除操作所施加在元件上的電性應力,會使穿隧氧化層產生缺陷,減少元件的使用壽命。這些被捕獲在氧化層中的電荷,影響浮動閘極與基板間的位能差,亦會影響寫入與抹除時的效率,令寫入臨界電壓飄移導致讀取視窗變小。當氧化層中的電荷累積到一定量時,會在浮動閘極、穿隧氧化層及基板間形成導通路徑,致使浮動閘極中的電子穿隧離開浮動閘極,因為浮動閘極為多晶矽材質,一旦該導通路徑形成,電子必將完全流失,造成資料毀損。
    從之前的研究指出溫度與寫入/抹除間的延遲時間,能夠幫助避免錯誤位元的提升以及導通路徑的形成。此外,本論文還試圖以反向陣列加入寫入電壓,以期能有改變元件修復特性的結果,實驗以1X奈米NAND型快閃記憶體測試晶片作為實驗樣品,以改變寫入/抹除操作的條件來探討延遲時間、溫度及擬讀取循環對元件耐久度的影響;最後,論文討論提出反向寫入/抹除對元件特性改變的分析。


    With the urgent demand in the market, flash memories have already been the mainstream technology in nonvolatile memories for decades and widely applied in embedded or portable electronics. Among the various types of flash memories, NAND flash memories provide the best solution in mass data-storage applications. In high-density NAND flash device, compact cells are subject to more stress and interferences, meanwhile, the reliability of these device in their endurance and retention emerges. During program and erase operation, electrical stress of the tunnel oxide generates defects, leading to a reduced lifetime during cycling endurance. These defects change the potential energy between floating gate and substrate and reduces the program/erase efficiency during operations. As trapped charges accumulate in the tunneling oxide layer, the programming characteristics may also shift. In addition, the stress-induced defects induce enhanced make charge lost through trap-assisted tunneling.
    Prior studies revealed that the cycling time and operation temperature both affect the charge-detrapping process and fail bits count during program/erase cycling endurance test. To further improve the recovery effect on the cells, we also study the effect of reverse side programming schemes. The experiments are based on 1X nm NAND flash testing chip as samples. The effect of operational parameters, delay time, dummy read reverse programming are investigated in this work.

    摘要 I Abstract II 致謝 III 目錄 V 附圖目錄 VI 第一章 序論 1 1.1 快閃記憶體介紹 2 1.2 Flash 可靠性挑戰 3 1.3 章節介紹 4 第二章 NAND型快閃記憶體 5 2.1 NAND結構與操作原理 5 2.2 NAND陣列架構 6 2.3 NAND型快閃記憶體的微縮與發展 7 2.4 記憶體陣列干擾效應的回顧 8 2.5 小結 8 第三章 干擾效應對元件可靠度的影響 16 3.1 干擾的類型 16 3.1.1 寫入干擾與過度寫入 16 3.1.2 通過干擾 17 3.1.3 讀取干擾 18 3.2 量測系統及實驗原理 18 3.3 延遲時間與溫度效應 19 3.3.1 電荷缺陷/逃脫原理 19 3.3.2 延遲時間效應與電荷捕捉/逃脫之關係 20 3.3.3 擬讀取循環分析 22 3.3.4 溫度效應與電荷捕捉/逃脫之關係 24 3.4 小結 25 第四章 寫入方式對元件可靠度的影響 39 4.1 反向寫入之干擾效應 39 4.1.1 反向寫入之操作 39 4.1.2 順向寫入與反向寫入的比較 40 4.2 ISPP Programming Sequence的改變 41 4.3 小結 42 第五章 結論 47 參考文獻 49

    [1] F. Masuoka, M. Asano, H. Iwahashi, T, Komuro, S. Tanaka, “A new flash E2PROM cell using triple polysilicon technology,” IEDM, pp. 464 – 467, 1984.
    [2] F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, “New ultra high density EPROM and flash EEPROM with NAND structure cell,” IEDM, pp.552 – 555, 1984.
    [3] Dongku Kang, Woopyo Jeong, Chulbum Kim, Soo-Hyun Kim, Yong Sung Cho, Kyung-Tae Kang, Jinho Ryu, Kyung-Min Kang, Sungyeon Lee, Wandong Kim, Young-Sun Min, Moo-sung Kim, An-Soo Park, Jae-Ick Son, In-Mo Kim, Pansuk Kwak, Bong-Kil Jung, Doo-Sub Lee, Hyunggon Kim, Hyang-Ja Yang, Dae-Seok Byeon, Ki-Tae Park, Kye-Hyung, Jeong-Hyuk Choi, “7.1 256Gb 3b/Cell V-NAND Flash Memory with 48stackedWL layers,” ISSCC, pp. 130 – 131, 2016.
    [4] Woopyo Jeong, Jae-woo Im, Doo-Hyun Kim, Sang-Wan Kim, You-Se Kim, Hyun-Wook Park, Dong-Hun Kwak, Sang-Won Shim, Kyung-Tae Kang, Jeong-Don Ihm, In-Mo Kim, Doo-Sub Lee, Ji=Ho Cho, Moo-Sung Kim, Jae-Hoon Jang, Sang-Won Hwang, Dae-Seok Byeon, Hyang-Ja Yang, Kitae Park, Kye-Hyun Kyung, Heong-Hyuk Choi, “128 Gb 3b/cell V-NAND Flash Memory With 1 Gb/s I/O Rate,” Solid-State Circuits, vol.51, no. 1, pp. 204-2121, 2016.
    [5] Tomoharu Tanaka, Mark Helm, Tommaso Vali, Ramin Ghodsi, Koichi Kawai, Jae-Kwan Park, Shigekazu Yamada, Feng Pan, Yuichi Einaga, Ali Ghalam, Toru Tanzawa, Jason Guo, Takaaki Ichikawa, Erwin Yu, Satoru Tamada, Tetsuji Manabe, Jiro Kishimoto, Yoko Oikawa, Yasuhiro Takashima, Hidehiko Kuge, Midori Morooka, Ali Mohammadzadeh, Jong Kang, Jeff Tsai, Emanuele Sirizotti, Eric Lee, Luyen Vu, Yuxing Liu, Hoon Choi, Kwonsu Cheon, Daesik Song, Daniel Shin, Jung Hee Yun, Michele Piccardi, Kim-Fung Chan, Yogesh Luthra, Dheeraj Srinivasan, Srinivasarao Deshmukh, Kalyan Kavalipurapu, Dan Nguyen, Girolamo Gallo, Sumant Ramprasad, Michelle Luo, Qiang Tang, Michele Incarnati, Agostino Macerola, Luigi Pilolli3, Luca De Santis, Massimo Rossini, Violante Moschiano, Giovanni Santin, Bernardino Tronca, Hyunseok Lee, Vipul Pate, Ted Pekny, Aaron Yip, Naveen Prabhu, Purval Sule, Trupti Bemalkhedkar, Kiranmayee Upadhyayula, Camila Jaramillo, “7.7 A 768Gb 3b/cell 3D-Floating-Gate NAND Flash Memory,” ISSCC, pp.142-144, 2016.
    [6] J-D Lee, et al., "Effects of interface trap generation and annihilation on the data retention characteristics of flash memory cells," in IEEE Trans. Device and Mater. Reliability, Vol. 4, 2004, pp. 110-117.
    [7] N. Mielke, et al., "Recovery effects in the distributed cycling," in Proc. IEEE Int. Reliability Physics Symp., 2006, pp. 29-35.
    [8] Zhiliang Xia, Dae Sin Kim, Narae Jeong, Young-Gu Kim, Jae-Ho Kim, Keun-Ho Lee, Young-Kwan Park, Chilhee Chung, Hwan Lee, Jungin Han, “Comprehensive modeling of NAND flash memory reliability: Endurance and data retention,” IRPS, pp. MY.5.1 - MY.5.4, 2012.
    [9] Paolo Pavan, Roberto Bez, Priero Olivo and Enrico Zanoni, “Flash Memory Cells—An Overview,” Proceedings of the IEEE, vol. 85, no. 8,Aug 1907, pp. 1248-1271.
    [10] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to Flash Memory,” Proccedings of the IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
    [11] D. M. Fleetwood, S. L. Miller, R. A. Reber, Jr., P. J. McWhorter, P. S. Winokur, M. R. Shaneyfelt, and J. R. Schwank, “New insights into radiation-induced oxide-trap charge through thermally-stimulated-current measurement and analysis,” Appl. Phys. Lett, vol. 60, issue 16, pp.2008, 1992.
    [12] T. Endoh, H. Iizuka, S. Aritome, R. Shirota, F. Masuoka, “New wirte/erase operation technology ofr flash EEPROM cells to improve the read disturb characteristics,” IEDM, pp. 603-606, Dec. 1992.
    [13] Jae-Duk Lee, Jeong-Hyuk Choi, Donggun Park, and Kinam Kim, “Degradation of tunnel oxide by FN current stress and its effects on data retention characteristics of 90 nm NAND flash memory cells,” IRPS, pp. 497-501, 2013.
    [14] R. Shirota, B-J. Yang et all., “Improvement of oxide reliability in NAND flash memories using tight endurance cycling with shorter idling period,” IRPS, pp. 497-501, 2013.
    [15] Hanmant P. Belgal, Nick Righos, Ivan Kalastirsky, Jeff I. Peterson, Robert Shiner, Neal Mielke, “A new reliability model for post-cycling charge retention of flash memories,” IRPS, pp. 7-20, 2002.
    [16] K. Naruke, S. Taguchi, M. Wada, “Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” IEDM, pp. 424-427, 1988.
    [17] Yunbong Lee, Byoungjun Park, DaeHwan Yun, YeonJoo Jeong, Pyoung Hwa Kim, Ji Yul Park, Hae chang Yang, Myoung Kwan Cho, Kun-Ok Ahn and Yohwan Koh, “The challenges and limitations on triple level cell geometry and process beyond 20 nm NAND Flash technology,” IEEE International Memory Workshop, pp. 120-121, May. 2010.
    [18] Akira Goda, Krishna Parat, “Scaling Directions for 2D and 3D NAND Cells,” IEDM, pp. 12-14, 2012.
    [19] Jung H. Yoon, “3D NAND Technology – Implications to Enterprise Storage Applications,” IBM Systems Supply Chain, 2014.
    [20] Seiji Yamada, Youhei Hiura, Tomoko Yamane, Kazumi Amemiya, Yoichi Ohshima, and Kuniyoshi Yoshikawa, “Degradation Mechanism of Flash EEPROM Programming After Progrm/Erase Cycles,” IEDM, pp. 23-26, 1993.
    [21] S. Aritome, R. Shirota, G. Hemink, T. Endoh, F. Masuoka, “Reliability issues of flash memory cells,” Proceedings of the IEEE, vol. 81, no.5, pp.776-788, 1993.
    [22] Seiichi Aritome, “Reliability Of Nand Flash Memory,” Wiley-IEEE Press eBook Chapters, 1edit, 2015.
    [23] T. Endoh, H. Iizuka, S. Aritome, R. Shirota, F. Masuoka, “New write/erase operation technology for flash EEPROM cells to improve the read disturb characteristics,” IEDM, 1992.
    [24] Masataka Kato, Naoki Miyamoto, Hitoshi Kume, Akihiko Satoh, Tetsuo Adachi, Masahiro Ushiyama, and Katsutaka Kimura, “Read-Disturb Degradation Mechanism due to Electron Trapping in the Tunnel Oxide for Low-Voltage Flash Memories,” IEDM, pp. 45-48, 1994.
    [25] Yu Cai , Yixin Luo , Saugata Ghose , Onur Mutlu, “Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery,” IFIP, Sep. 2015
    [26] Neal Mielke, Hanmant P. Belgal, Albert Fazio, Qingru Meng, and Nick Righos, “Recovery Effects in the Distributed Cycling of Flash Memories,” IRPS, pp. 29-35, Mar. 2006.
    [27] Neal Mielke, Hanmant Belgal, Ivan Kalastirsky, Pranav Kalavade, Andrew Kurtz, Qingru Meng, Nick Righos, and Jie Wu, “Flash EEPROM Threshold Instabilities due to Charge Trapping During Program/Erase Cycling,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, Sep. 2004.
    [28] Christian Monzio Compagnoni, Carmine Miccoli, Riccardo Mottadelli, Silvia Beltrami, Michele Ghidotti, Andrea L. Lacaita, Alessandro S. Spinelli, and Angelo Visconti, “Investigation of the threshold voltage instability after distributed cycling in nanoscale NAND Flash memory arrays,” IRPS, pp. 604-610, May. 2010.
    [29] Min Shi, Jin He, Lining Zhang, Chenyue Ma, Xingye Zhou, Haijun Lou, Hao Zhuang, Ruonan Wang, Yongliang Li, Yong Ma, Wen Wu, Wenping Wang, and Mansun Chan, “Zero-Mask Contact Fuse for One-Time-Programmable Memory in Standard CMOS Processes,” IEEE Electron Device Letters, vol. 32, no. 7, July. 2011.
    [30] Yu Cai, Erich F. Haratsch, Onur Mutlu and Ken Mai, “Error patterns in MLC NAND flash memory Measurement, characterization, and analysis,” DATE, pp. 521-526, Mar. 2012.
    [31] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum, Jung-Hyuk Choi, Jang-Rae Kim and Hyung-Kyu Lim, “A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme,” JSSC, vol. 30, no. 11, pp. 1149-1156, Nov. 1995.

    QR CODE