研究生: |
李佳蔭 Chia-Ying Li |
---|---|
論文名稱: |
富錫相之錫銅鎳三元平衡相圖 Phase equilibria in the Sn-rich corner of the Sn-Cu-Ni ternary alloy system. |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 錫銅鎳 、相平衡 、三元相圖 、X-ray color mapping 、相分析 、固溶情形 |
外文關鍵詞: | Sn-Cu- Ni, phase equilibria, ternary isotherm, X-ray color mapping, phase analysis, solubility |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的微電子封裝技術中,銲錫(solder)及凸塊底層金屬(UBM)的界面反應是一個被廣泛注意及研究的課題,由於在銲錫及凸塊底層金屬的接層會形成介金屬化合物(IMC)(Cu,Ni)6Sn5及(Ni,Cu)3Sn4,為了瞭解其界面反應情形及其相變化之過程,相關之研究必須有一個包含銲錫、介金屬化合物及凸塊底層金屬等材料的完整相圖配合。因此,為了要探討(Ni1-x,Cux)3Sn4及(Cu1-y,Niy)6Sn5中銅及鎳的固溶濃度變化,富錫相之錫銅鎳三元平衡相圖研究佔有一關鍵性的地位。
本研究係設計並製備經過240℃熱處理達平衡的錫銅鎳三元合金。由X光繞射分析做相鑑定研究,其結果顯示這些合金中存在有Sn,Ni3Sn4及Cu6Sn5三種相,並藉由顯微鏡分析之二次電子與背向散射電子影像,利用不同之對比定義出不同之相及其分佈。另外,搭配顯微分析與詳細的定量分析,此富錫相之錫銅鎳三元合金中的三相區邊界頂點確定為98.5 at. % Sn、(Ni0.80, Cu0.20)3Sn4及(Cu0.59,Ni0.41)6Sn5三個組成。另外,利用電子探針微分析儀之X-ray color mapping及Phase analysis之特殊技巧,可瞭解相組成的均勻性及其分佈情形。再者,由X-ray color mapping所得的成分分析結果轉換成原子百分比,並轉映至錫銅鎳三元相圖上,結果與詳細的定量分析結果幾乎完全吻合。
除此之外,本研究也探討了銅在(Ni,Cu)3Sn4及鎳在(Cu,Ni)6Sn5的固溶情形。在240℃的錫銅鎳三元系統的相關議題將依據本研究結果做深入探討,主要在240℃之介面生成物的元素分佈及相變化情形可利用此富錫相之錫銅鎳三元平衡相圖加以解釋。
The interfacial reactions between solders and under bump metallization (UBM) are of highly interests recently in flip chip technology. Intermetallic compounds (IMCs), i.e. (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4, formed between solders and UBM. To fully understand the interfacial reactions and phase transformation phenomenon, a suitable phase diagram concerning solder, IMCs and UBM material is required. As a result, Sn-riched phase in Sn-Cu-Ni ternary phase diagram is very critical in determining the concentration tendency of x and y values in (Ni1-x,Cux)3Sn4 and (Cu1-y,Niy)6Sn5 compounds. In this study, ternary Sn-Cu-Ni alloys were prepared and annealed at 240℃. Three equilibrium phases, Sn, Ni3Sn4 and Cu6Sn5, were identified by XRD analysis, and also evidenced in BEI micrograph. Using EPMA quantitave analysis, three acme compositions of the ternary region in the Sn-Cu-Ni isotherm near the Sn-riched corner were determined as 98.5 at.%Sn, (Ni0.80, Cu0.20)3Sn4 and (Cu0.59,Ni0.41)6Sn5. Furthermore, the degree of composition homogeneity and the distribution of the forming phases were evaluated by X-ray color mapping and phase analysis technique. By way of software program to convert the concentration measured with EPMA, the exact compositions could be mapped on the Sn-Cu-Ni ternary isotherm. In addition, the solubility of the Cu and Ni in (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5 compounds was evaluated. Finally, the isothermal section of the ternary Sn-Cu-Ni system at 240℃ was proposed on the basis of experimental results in this study. Furthermore, the related phase transformation was also discussed with respect to the formation of the IMCs around 240℃.
1. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996.
2. D. S. Patterson, P. Eleniu and J. A. Leal, Adv. Electron. Pkg. 1 337 (1997).
3. C. S. Chang, A. Oscilowski and R. C. Bracken, IEEE Circuits Devices Mag., 14, 45 (1998).
4. M. E. Loomans, S. Vaynman, G. Ghosh and M. E. Fine, J. Electron. Mater. 23, 741 (1994).
5. A. A. Liu, H. K. Kim, K. N. Tu and P. A. Totta, J. Appl. Phys. 80, 2774 (1996).
6. K. L. Lin and Y. C. Liu, IEEE Trans. on Adv. Packag. 22, 575 (1999).
7. H. K. Kim, K. N. Tu and P. A. Totta, Appl. Phys. Lett. 68, 2204 (1996).
8. C. A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
9. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2001).
10. J. W. Morris, Jr., J. L. Freer Goldstein and Z. Mei, JOM 45, 25 (1993)
11. R. E. Reed-Hill, Physical metallurgy principles, 3rd edtion, PWS, Boston, 1994.
12. W. R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961.
13. H. D. Blair, T. Y. Pan and J. M. Nicholson, Electronic Components and Technology Conference, 259 (1998).
14. K. Zeng and K. N. Tu, Mater. Sci. Eng. R 38, 55 (2002).
15. C. C. Young, J. G. Duh and S.Y. Tsai, J. Electron. Mater. 30, 1241 (2001).
16. Y. G. Lee and J. G. Duh, J. Mater. Sci. 10, 33 (1999).
17. Y. G. Lee and J. G. Duh, Materials Characterization, 42, 143 (1999).
18. K. Zeng, V. Vuorinen, and J. K. Kivilahti, Electronic Components and Technology Conference, 2001. Proceedings, 29, 693 (2001).
19. K. Zeng, V. Vuorinen, and J. K. Kivilahti, Electronics Packaging Manufacturing, IEEE Transactions on, 25, 162 (2002).
20. J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, J. Electron. Mater. 32, 1203 (2003).
21. G. Ghosh, Acta mater. 48, 3719 (2000).
22. K. L. Lin, and Y. C. Liu, Proceeding of Electronic Components and Technology Conference, 607 (1999).
23. B. L. Young and J. G. Duh, J. Electron. Mater. 30, 878 (2001).
24. S. K. Kang, R. S. Rai and S. Purrshothaman, J. Electron. Mater. 25, 1113 (1996).
25. J. W. Nah and K. W. Paik, IEEE Trans. Compon. Packag. Technol. 25, 32 (2002).
26. C. H. Lin, S. W. Chen and C. H. Wang, J. Electron. Mater. 31, 907 (2002).
27. C. S. Huang, J. G. Duh, Y. M. Chen and J. H. Wang, J. Electron. Mater. 32, 89 (2002).
28. C. S. Huang, J.H. Yeh, B.L. Young and J.G. Duh, J. Electron. Mater. 31, 1230 (2002).
29. C. S. Huang and J. G. Duh, J. Mater. Res. 18, 935 (2003).
30. G. Y. Jang, C. S. Huang, L. Y. Hsiao and J. G. Duh, J. Electron. Mater, in press.
31. G. Y. Jang and J. G. Duh, submitted to J. Electron. Mater.
32. W. T. Chen, C. E. Ho, and C.R. Kao, J. Mater. Res. 17, 263 (2002).
33. J. I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 3rd Edition, Plenum Press, New York, 2003.