簡易檢索 / 詳目顯示

研究生: 謝名凱
Hsieh,Ming-Kai
論文名稱: 利用外加電場對於絕緣矽中產生之光激發自由載子濃度分析
Enhanced photon-induced free carrier density in silicon-on-insulator via applying external electric field on the surface
指導教授: 李明昌
Lee,Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 71
中文關鍵詞: free carrier lifetimeall-optical modulationsurface recombinationsoi
外文關鍵詞: 自由載子生命期, 全光調變, 表面復合, 絕緣矽
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中我們探討外加電場對於在絕緣矽中產生之光激發自由載子濃度的增益。藉由外加電場我們將靠近絕緣矽表面的能帶彎曲,使得絕緣矽表面附近的自由載子處於累積(accumulation)或反轉(inversion)情況,造成自由載子表面復合(surface recombination)機率可以有效的被減低。另外,我們也討論偏壓極性對於載子濃度的影響。施加偏壓於不同厚度的絕緣矽上,其載子濃度增益也會有不同的表現。此外,施加雙側偏壓所造成的載子濃度增益將比只施加單側邊壓還高,而雙側偏壓的載子濃度增益相當於兩邊單側偏壓所造成載子濃度增益的總和。


    In this paper, we studied the enhancement of photon-induced free-carrier density in silicon-on-insulator (SOI) by applying electric field. Under such a bias, electronic band bends near the surface, resulting in the interface condition either in accumulation or inversion that depends on the polarity of bias voltage. Both conditions will effectively suppress the surface recombination. In addition, the photon-induced carrier density is also dependent on the thickness of SOI substrate. The enhancement due to two-side bias (bottom and top) is better than single-side bias, simply equivalent to two effects added together.

    摘要 Abstract 致謝 目錄 第一章 緒論 1-1 前言 1-2 研究動機 1-3 論文內容導覽 第二章 理論背景 2-1 光電導原理 2-1.1 光的吸收 2-1.2 光電導 2-2 自由載子產生及復合機制 2-2.1 平衡態的半導體 2-2.2 過量載子的產生與復合 2-2.3 Shockley-Read-Hall復合理論 2-2.4 表面復合 2-2.5 歐傑復合 2-3 外加電場對自由載子濃度的影響 2-4 文獻上的量測方法 第三章 實驗設計與步驟 3-1 元件製程流程 3-2 實驗架設 3-1.1 光路架設 3-1.2 偏壓架設 3-1.3 溫控架設 3-1.4 光電導量測架設 第四章 數據量測與分析 4-1 光場調變量測 4-2 偏壓調變量測 4-2.1 下偏壓調變 4-2.1.1 下偏壓調變對薄SOI的影響 4-2.1.2 下偏壓調變對厚SOI的影響 4-2.1.3 下偏壓調變對厚、薄SOI影響比較 4-2.2 上偏壓調變 4-2.2.1 上偏壓調變對薄SOI的影響 4-2.2.2 上偏壓調變對厚SOI的影響 4-2.2.3 上偏壓調變對厚、薄SOI影響比較 4-2.3 上下偏壓調變 第五章 結論 參考文獻

    [1] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light in a silicon chip,” Nature 431, 1081-1084 (2004).
    [2] M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami, “Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals” Applied Optics, Vol. 47, Issue 27, pp. 5041-5050
    [3] B.G. Lee, A. Biberman, P. Dong, M. Lipson, K. Bergman, "All-Optical Comb Switch for Multi-Wavelength Message Routing in Silicon Photonic Networks," IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 767-769, May 15, 2008
    [4] Singapore's Nanyang Technological University (NTU) “Photonic crystal yields ultrafast all-optical switch” A.L. Narayan
    optics.org, 8 Dec 2006
    [5] Masaya Ichimura, Masashi Hirano, Naoki Kato, Eisuke Arai1, Hiroyuki Takamatsu and Shingo Sumie,” Control of Surface Recombination of Si Wafers by an External Electrode” Jpn. J. Appl. Phys. 38 (1999) pp. L292-L294
    [6] KUWAYAMA Toshio, ICHIMURA Masaya , ARAI Eisuke “Interface recombination velocity measurements for SOI wafers by .MU.-PCD with electric field.” Applied physics letters, 2003, vol. 83, no5, pp. 928-930
    [7] GAO Yong, LI Guo-zheng, LIU Xi-ding, LIU En-ke “SiGe Optical Waveguide Modulators Based. on. the Plasma Dispersion Effect” CHIN.PHYS.LETT ,Vo1.13,No.3( 1996)189
    [8] S.M.Sze , SEMICONDUCTOR DEVICE Physics and Technology, Wiley,2002
    [9] S.M. Sze , Physics of semiconductor devices, Wiley,1981
    [10] Donald A.Neamen, Fundamentals of Semiconductor Physics and Devices, McGraw-Hill,2003
    [11] John Wilson, Optoelectronics : an introduction,Wilson,1939
    [12]劉傳璽,陳進來, Semiconductor device physics and process theory & practice, 臺北市,五南圖書, 2006
    [13] Greg Parker, Introductory semiconductor device physic, New York ; London : Taylor & Francis, 2004.
    [14] Sandip Tiwari, Compound semiconductor device physics , Boston : Academic Press, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE