簡易檢索 / 詳目顯示

研究生: 黃昭源
Huang, Chao-Yuan
論文名稱: Dose evaluation of nasopharyngeal carcinoma radiotherapy
鼻咽癌放射治療之劑量探討
指導教授: 朱鐵吉
Chu, Tieh-Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 71
中文關鍵詞: 鼻咽癌放射治療劑量探討
外文關鍵詞: nasopharyngeal carcinoma, radiotherapy, dose evaluation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Radiotherapy is the principle treatment for nasopharyngeal carcinomas. For early stage disease, radiotherapy alone is the treatment of choice. For locally advanced disease, concurrent chemoradiotherapy is recommended and become the standard of care.
    Using Monte Carlo simulation and the convolution/superposition algorithm, we examines percent depth dose curves of the central axis in an acrylic phantom with variously sized air cavities for study of longitudinal electron disequilibrium (ED) and for study of lateral ED.
    The dose in the rebuild-up region is influenced. The influenced region is on the acrylic phantom surface to a depth of about 0.5 cm. The density scaling method of the convolution/superposition algorithm, applied to heterogeneous media, should be enhanced to account for the overexpansion of the dose kernel in the cavity of ED.
    The radiation dose near the interface between high and low atomic number (Z) materials exposed to kilo-voltage photons is enhanced. However, the dose near high-Z interfaces is reduced if the material is thin. Using thermoluminescence dosimeters and Monte Carlo simulation, we found that dose reduction occurs only for gold film thickness less than a micrometer. For kilovoltage photons, the nanometric gold material enhances the nearby dose within 5 mm and this can be used to enhance radiotoxicity in clinic radiotherapy.
    It is very important to do every effort for improving the primary local control of nasopharyngeal carcinoma by accurately evaluating the tumor dose and enhancing radiotoxicity in clinic radiotherapy.


    放射治療是治療鼻咽癌最主要的方法,對於初期的鼻咽癌可以選擇只要放射治療就好,對於局部侵犯比較嚴重的病患則會建議同時放射化學治療,而且同時放射化學治療已經成為鼻咽癌的標準療法。
    放射治療應用於鼻咽癌治療時,面臨劑量計算上的難題,因為鼻咽腔的空腔會引起電子不平衡現象,導致緊鄰空腔的腫瘤劑量不足,而容易復發。為驗證此假說並建立臨床劑量計算校正參考,運用迴旋疊合演算法與蒙地卡羅模擬法來計算壓克力空腔假體中心軸百分深度劑量曲線。壓克力空腔假體為本研究團隊原創設計,用於研究縱向與側向電子不平衡狀態。
    實驗結果顯示:緊鄰空腔的再增建區劑量會受影響,範圍從空腔後壓克力表面到0.5公分的深度。本研究發現,一般臨床常用於鼻咽癌放射治療劑量計算的迴旋疊合演算法,在電子不平衡狀態下的空腔中,計算不均勻介質的劑量,會產生誤差,必須先校正劑量計算的誤差,再治療病患,才能使鼻咽腫瘤接受足夠的劑量而治癒。
    當千伏光子經過高原子序與低原子序材料界面時,放射劑量會有加強現象,然而,當材料很薄時,對於高原子序材料界面附近的劑量反而會降低。我們使用熱發光劑量計與蒙地卡羅程式來研究,發現當金膜厚度小於微米尺度時,才會產生劑量降低的現象。但是,當千伏光子照射奈米尺度金膜時,我們的實驗結果發現:小於5 mm 的金膜附近,劑量有加強的現象。將這種劑量加強的效果運用於臨床鼻咽癌病患的治療上,可以增強放射線殺癌細胞的能力。
    我們認為,盡一切努力來正確評估腫瘤劑量與增強放射線殺癌細胞的能力,進而提高鼻咽癌病患腫瘤局部控制率是非常重要的。

    摘要 i Abstract ii Acknowledgments iii Contents iv Chapter 1. Introduction of nasopharyngeal carcinoma 1 1.1 Anatomy of nasopharynx 1 1.2 The lymphatic drainage of nasopharynx 2 1.3 Epidemiology and etiology 3 1.4 Natural history of nasopharyngeal carcinoma 7 1.5 Clinical manifestation 9 1.6 Diagnosis and TNM staging system 11 1.7 Pathology of nasopharyngeal carcinoma 13 1.8 Prognostic factors 14 Chapter 2. Nasopharyngeal Carcinoma Radiotherapy 17 2.1 Therapeutic approaches 17 2.2 Traditional 2D radiotherapy 18 2.3 Conformal 3D radiotherapy 20 2.4 Intensity-Modulated Radiation Therapy 23 2.5 Target Volume Determination 24 2.6 Tretment results 25 2.7 Recurrence after radiotherapy 27 Chapter 3. Evaluate The Dose Perturbations Affected By Air Cacity In Nasopharyngeal Carcinoma Radiotherapy 30 3.1 Insufficient dose results in recurrence 30 3.2 Novel acrylic phantom simulate nasopharynx 31 3.3 Risk of overestimated dose in the air cavity 33 3.4 Simulation of the linear accelerator 34 3.5 Measurement the dose in acrylic phantom 35 3.6 Results and discussion 37 Chapter 4. Evaluate The Dose Perturbations At Ultra-Thin Gold Foil Interfaces 44 4.1 Introduction 44 4.2 Materials preparation 45 4.3 Calculation method 47 4.4 Experiment 48 4.5 Results and discussion 49 Chapter 5. Conclusion And Future Prospects 59 References 61 Publication List 71

    1. Parkin DM, Whelan SL, Ferlay J, et al. Cancer incidence in five continents. Lyon, France: International Agency for Research on Cancer. 1997;7:334–337.
    2. Lee AW, Foo W, Mang O, et al. Changing epidemiology of nasopharyngeal carcinoma in Hong Kong over a 20-year period (1980-99): an encouraging reduction in both incidence and mortality. Int J Cancer 2003;103:680-685.
    3. Buell P. The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer Res 1974;34:1189–1191.
    4. Ho J. Stage classification of nasopharyngeal carcinoma. Lyon: IARC Science Publication No.20, 1978.
    5. Armstrong R, Armstrong M, Yu M, et al. Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res 1983;43:2967–2970.
    6. Old LJ, Boyse EA, Oettgen HP. Precipitating antibody in human serum to antigen present in cultured Burkitt lymphoma cell. Proc Natl Acad Sci USA. 1966;56:1699-1704.
    7. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen JY, and Yang CS. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 2001;345:1877-1882.
    8. Mesic J, Fletcher G, Goepfert H. Megavoltage irradiation of epithelial tumors of the nasopharynx. Int J Radiat Oncol Biol Phys 1981;7:447–453.
    9. King A, Ahuja A, Leung S, et al. Neck node metastases from nasopharyngeal carcinoma: MR imaging of patterns of disease. Head Neck 2000;22:275–281.
    10. Petrovich Z, Cox J, Middleton R, et al. Advanced carcinoma of the nasopharynx. II. Pattern of failure in 256 patients. Radiother Oncol 1985;4:15–20.
    11. Cheng JCH, Chao KSC, Low D. Comparison of IMRT techniques for nasopharyngeal carcinoma. Int J Cancer 2001;96:126–132.
    12. Low W. The contact bleeding sign of nasopharyngeal carcinoma. Head Neck 1997;19:617–619.
    13. Leung S, Tsao S, Teo P, et al. Cranial nerve involvement by nasopharyngeal carcinoma: Response to treatment and clinical significance. Clin Oncol 1990;2:138–141.
    14. Liu FY, Lin CY, Chang JT et al. 18F-FDG PET can replace conventional work-up in primary M staging of nonkeratinizing nasopharyngeal carcinoma. J Nucl Med 2007;48:1614-1619.
    15. Greene FL, Page DL, Fleming ID et al. American Joint Committee on Cancer, American Cancer Society. AJCC Cancer Staging Manual, 6th ed. Springer-Verlag, Berlin Heidelberg New York 2002.
    16. Shanmugaratnam K, LH Sobin. Histological typing of tumours of the upper respiratory tract and ear. In: Shanmugaratnam K, Sobin LH (eds) International histological classifi cation of tumours: no 19. WHO, Geneva, 1991;pp 32-33
    17. Marks JE, Phillips JL, Menck HR The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 1998;83:582-588.
    18. McGuire LJ, Lee JC The histopathologic diagnosis of nasopharyngeal carcinoma. Ear Nose Throat J 1990;69:229-236.
    19. Lee JT, Ko CY Has survival improved for nasopharyngeal carcinoma in the United States? Otolaryngol Head Neck Surg 2005;132:303-308.
    20. Chua DT, Sham JS, Choy DT. Prognostic impact of hemoglobin levels on treatment outcome in patients with nasopharyngeal carcinoma treated with sequential chemoradiotherapy or radiotherapy alone. Cancer 2004;101:307-316
    21. Le QT, Jones CD, Yau TK et al. A comparison study of different PCR assays in measuring circulating plasma Epstein-Barr virus DNA levels in patients with nasopharyngeal carcinoma. Clin Cancer Res 2005;11:5700-5707.
    22. Ma J, Mai HQ, Hong MH et al. Is the 1997 AJCC staging system for nasopharyngeal carcinoma prognostically useful for Chinese patient populations? Int J Radiat Oncol Biol Phys 2001;50:1181-1189.
    23. Cheng SH, Yen KL Jian JJ et al. Examining prognostic factors and patterns of failure in nasopharyngeal carcinoma following concomitant radiotherapy and chemotherapy: impact on future clinical trials. Int J Radiat Oncol Biol Phys 2001;50:717-726.
    24. Teo PM, Leung SF, Yu P et al. A comparison of Ho’s, International Union Against Cancer, and American Joint Committee stage classifi cations for nasopharyngeal carcinoma. Cancer 1991;67:434-439.
    25. Geara FB, Sanguineti G, Tucker SL et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of distant metastasis and survival. Radiother Oncol 1997;43:53-61.
    26. Ho J, Chan M, Tsao S, et al. Treatment of residual and recurrent cervical metastasis from nasopharyngeal carcinoma. Ann Acad Med 1988;17:22–24.
    27. Al-Sarraf M, Leblanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: Phase III randomized intergroup study 0099. J Clin Oncol 1998;16:1310–1317.
    28. Kutcher G, Fuks Z, Brenner H, et al. Three-dimensional photon treatment planning for carcinoma of the nasopharynx. Int J Radiat Oncol Biol Phys 1991;21:169–182.
    29. Leibel SA, Kutcher GJ, Harrison LB, et al. Improved dose distributions for 3D conformal boost treatments in carcinoma of the nasopharynx. Int J Radiat Oncol Biol Phys 1991;20:823–833.
    30. Brown A, Urie M, Chisin R, et al. Proton therapy for carcinoma of the nasopharynx: A study in comparative treatment planning. Int J Radiat Oncol Biol Phys 1989;16:1607–1614.
    31. Kam MK, Leung SF, Zee B et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J Clin Oncol 2007;25:4873–4879.
    32. Hoppe R, Goffinet D, Bagshaw M. Carcinoma of the nasopharynx: Eighteen years’ experience with megavoltage radiation therapy. Cancer 1976;37:2605–2612.
    33. Ozyar E, Yildiz F, Akyol F, et al. Comparison of AJCC 19888 and 1997 classifications for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1999;44:1079–1087.
    34. Chien C, Chen S, Hsieh C, et al. Retrospective comparison of the AJCC 5th edition classification for nasopharyngeal carcinoma with the AJCC 4th edition: an experience in Taiwan. Jpn J Clin Oncol 2001;31:363–369.
    35. Lee A, Foo W, Law S, et al. Staging of nasopharyngeal carcinoma: from Ho’s to the new UICC system. Int J Cancer 1999;84:179–187.
    36. Ma J, Mai H, Hong M, et al. Is the 1997 AJCC staging system for nasopharyngeal carcinoma prognostically useful for Chinese patient populations? Int J Radiat Oncol Biol Phys 2001;50:1181–1189
    37. Lee N, Xia P, Quivey J, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 2002;53:12–22.
    38. Bailet J, Mark R, Abemayor E, et al. Nasopharyngeal carcinoma: Treatment results with primary radiation therapy. Laryngoscope 1992;102:965–972.
    39. Kajanti M, Mäntylä M. Carcinoma of the nasopharynx: A retrospective analysis of treatment results in 125 patients. Acta Oncol 1990;29:611–614.
    40. Johansen L, Mestre M, Overgaard J. Carcinoma of the nasopharynx: Analysis of treatment results in 167 consecutively admitted patients. Head Neck 1992;14:200–207.
    41. Lee A, Poon Y, Foo W, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976–1985: Overall survival and patterns of failure. Int J Radiat Oncol Biol Phys 1992;23:261–270.
    42. Kwong D, Sham J, Choy D. The effect of loco-regional control on distant metastatic dissemination in carcinoma of the nasopharynx: An analysis of 1301 patients. Int J Radiat Oncol Biol Phys 1994;30:1029–1036.
    43. Shahine BH, Al-Ghazi MSAL, El-Khatib E. Experimental evaluation of interface doses in the presence of air cavities compared with treatment planning algorithm. Med Phys 1999;26:350-355.147. 148.
    44. Klein EE, Chin LM, Rice RK, Mijnheer BJ. The influence of air cavities on interface doses for photon beams. Int J Radiat Oncol Biol Phys 1993;27:419-427.
    45. Webb S. Intensity-Modulated Radiation Therapy. IOP Publishing, London, 2001 pp.75-198.
    46. Khan FM, Potish RA. Treatment Planning in Radiation Oncology. William& Wilkins, Baltimore, 1998 pp.187-213.
    47. Ahnesjo A, Andreo P, Brahme. A, Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol 1987;26: 49-51.
    48. Papanikolaou N, Mackie TR, Meger-Wells C, Gehring M, Reckwerdt P. Investigation of the convolution method for polyenergetic spectra. Med Phys 1993;20:1327-1336.
    49. Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV X-rays. Med Phys 1984;12:188-196.
    50. Nelson WR, Hirayama H, Rogers DWO. The EGS4 code system. SLAC-Report-265, Stanford Linear Accelerator Center 1985.
    51. Lin SY, Chu TC, Lin JP. Monte Carlo simulation of clinical linear accelerator. Appl Radiat Isotopes 2001;55:759-765.
    52. Bielajew AE, Rogers DWO. Presta: the parameter reduced electron step transport algorithmfor electron Monte Carlo transport. Nucl Instrum Method Phys Res 1987;18:165-181.
    53. Niroomand-Rad A. Radiochromic film dosimetry: Recommendation of AAPM Radiation Therapy Committee Task Group 55. Med Phys 1998;25:2093-2115.
    54. Min BJ, Kim S, Loh JK, Cho YK. Photon energy dependence of sensitivity of LiF TLDs loaded with thin material. J Korea Soc Ther Radiol Oncol 1999;17:256-260.
    55. Hsu HH, Chen J, Vasilik DG. Photon radiation dose enhancement at material interfaces. J Appl Radiat Isot 2001;55:323-326.
    56. Das IJ, Kassaee A, Verhaegen F, Moskvin VP. Interface dosimetry: measurements and Monte Carlo simulations of low-energy photon beams. Radiat Phys Chem 2001;61:593-595.
    57. Das IJ, Moskvin VP, Kassaee A, Tabata T, Verhaegen F. Dose perturbations at high-Z interfaces in kilovoltage photon beams: comparison with Monte Carlo simulations and measurements. Radiat Phys Chem 2002;64:173-179.
    58. Regulla DF, Hieber LB, Seidenbusch M. Physical and biological interface dose effects in tissue due to x-ray induced release of secondary radiation from metallic gold surfaces. Radiat Res 1998;150:92-100.
    59. Regulla DF, Schmid E, Friedland W, Panzer W, Heinzmannc U, Harderd D. Enhanced values of the RBE and h ratio for cyto-genetic effects induced by secondary electrons from an x-irradiated gold surface. Radiat Res 2002;158:505-515.
    60. Das IJ, Cheng CW, Mitra RK, Kassaee A, Tochner Z, Solin LJ. Transmission and dose perturbations with high-Z materials in clinical electron beams. Med Phys 2004;31:3213-3221.
    61. Werner BL, Das IJ, Salk WN. Dose perturbations at interfaces in photon beams: secondary electron transport. Med Phys 1990;17:212-226.
    62. Li XA, Chu JC, Chen W, Zusag T. Dose enhancement by a thin foil of high-Z material: a Monte Carlo study. Med Phys 1999;26:1245-1251.
    63. Hainfeld JJ, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:309–315.
    64. Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 2005;50:163–173.
    65. Brun E, Duchambon P, Blouquit Y, Keller G, Sanche L, Sicard-Roselli C. Gold nanoparticles enhance the X-ray-induced degradation of human centrin 2 protein. Radiat Phys Chem 2009;78:177-183.
    66. Lin JP, Chu TC, Lin SY, Liu MT. Skin dose measurement by using ultra-thin TLDs. Appl Radiat Isot 2001;55:383-391.
    67. Salvat F, Fernandez-Varea JM, Sempau J. PENELOPE-2006: An Algorithm and Computer Code for Monte Carlo Simulation of Electron–Photon Showers. NEA No. 6222, Nuclear energy agency, organisation for economic co-operation and development, Paris, France 2006.
    68. Hugtenburg RP, Chaouic Z, Pattison JE. Microdosimetric event distributions in sub-cellular volumes with a general purpose Monte Carlo code. Nuclear Instruments and Methods in Physics Research A. 2007;580:157–160.
    69. Butson MJ, Cheung T, Yu PK. Measurement of energy dependence for XRCT radiochromic film. Med Phys 2006;33:2923-2925.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE