簡易檢索 / 詳目顯示

研究生: 徐智梵
Hsu, Chih-Fan
論文名稱: Decentralized Joint Positioning and Path-Loss Exponent Estimation for Wireless Sensor Networks
無線感測網路之分散式聯合定位與通道衰減指數估測技術
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 林風
王晉良
張仲儒
魏宏宇
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 25
中文關鍵詞: 無線感測網路定位
外文關鍵詞: wireless sensor network, positioning, received signal strength
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wireless sensor network (WSN) localization has received a great deal of attention in recent years. Using the information of received signal strength (RSS) measurements, many decentralized localization methods have been proposed to decrease the sensor node’s energy consumption. Generally, the large-scale behavior of the signal received at each sensor node can be modeled as the distance-dependent path loss model in indoor environment, thus the performance of RSS-based localization methods will be affected by the estimation accuracy of path loss exponent (PLE).
    In this thesis, we propose a joint positioning and PLE estimation method based on recursive weighted least squares (RWLS) optimization for WSNs. We first formulate two recursive-in-time cost functions from a sum of the local cost functions and then prove that the minimization of the recursive-in-time cost functions can be realized by the joint positioning and PLE estimation method. In other words, our method is derived from the minimization of the recursive-in-time cost function and then realized in an iterative, decentralized manner. In the proposed method, the PLE and the target location are computed iteratively by taking a weighted average of the local estimates according to the reliability of the sensor nodes, and the reliability is concerning about the PLE and distance estimates. During each iteration, a sensor node computes a new PLE estimate and a new location estimate by its own observation and the most update passed over by the sensor node responsible for the pervious iteration. The newest estimates are circulated and updated among the sensor nodes in the localization procedure. Computer simulation results demonstrate that our method has better location accuracy than the recursive weighted least squares (RWLS) method.


    無線網路中的定位在最近這些年受到很大的關注。利用測量訊號強度大小(RSS)的資訊,許多為了要減少感測節點能量消耗的分散式定位演算法相繼被提出。一般來說,在室內的環境中,距離與收到訊號的關係可以利用距離相關的通道衰減模型來表示,因此,這模型的好壞與否受到通道衰減指估測的精準度的影響。
    在本篇論文中,基於遞迴式加權最小平方法,我們對於無線感測網路提出了一種結合定位與訊號衰減指數估測的演算法。首先,我們累加了區域的成本函數形成兩個具有及時遞迴性質的成本函數,然後證明最小化這個及時遞迴的成本函數可以被聯合定位與通道衰減指數估測的方法實現。也就是說,我們的方法是最小化這兩個及時遞迴的成本函數所得到,然後利用迴圈與分散式的方式實現。在這個方法中,目標物的位置與訊號衰減指數是根據感測結點的可靠度迴圈式地計算加權平均每個節點自己的估計值所得到,而這個可靠度與通道衰減指數和距離的估測有關。在每一個迴圈中,一個參與定位的節點藉由自己的觀察值和負責前一個迴圈的節點所傳過來最後更新的估測值計算最新的訊號衰減指數的估測值與目標物的估計位置。在整個過程中,最新的估測值不斷地被參與的節點環繞且更新。電腦的模擬結果顯示,我們所提出結合定位與訊號衰減指數估測的方法在估測位置的精準度方面是表現得比之前RWLS的方法好。

    Abstract Contents List of Figures Chapter 1 Introduction Chapter 2 Related Works 2.1 Decentralized Recursive Weighted Least-Squares Method Chapter 3 The Proposed Joint Positioning and Path Loss Exponent Estimation Scheme 3.1 System Model 3.2 Problem Formulation 3.2.1 The PLE estimation 3.2.2 The position estimation 3.3 Proposed Joint Positioning and Path Loss Exponent Estimation Scheme 3.3.1 The process 3.3.2 The PLE estimation 3.3.3 The positioning algorithm 3.3.4 The joint algorithm Chapter 4 Simulation Results Chapter 5 Conclusions

    [1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Mag., vol. 22, pp. 54–69, July 2005.

    [2] M. G. Rabbat and R. D. Nowak, “Decentralized source localization and tracking,” in Proc. 2004 IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP 2004), vol. 3, Montreal, QC, Canada, May 2004, pp. 921–924.

    [3] C.-L. Wang, D.-S. Wu, and J.-H. Kuan, “Decentralized positioning and tracking based on a variable step-size incremental subgradient algorithm for wireless sensor networks,” in Proc. 2008 IEEE Int. Conf. Sym. on Personal, Indoor and Mobile Radio Commun. (PIMRC 2008), Cannes, France, Sept. 2008, pp. 1-5.K.

    [4] C.-L. Wang and D.-S. Wu, “Decentralized positioning and tracking based on a weighted incremental subgradient algorithm for wireless sensor networks,” in Proc. 2008 IEEE Veh. Technol. Conf. (VTC 2008), Calgary, Canada, Step. 2008, pp. 1-5.

    [5] A. O. Hero, III and D. Blatt, “Sensor network source localization via projection onto convex sets (POCS),” in Proc. 2005 IEEE Int. Conf. Acoustic, Speech, and Signal Processing (ICASSP 2005), Philadelphia, PA, USA, Mar. 2005, pp. 1065–1068.

    [6] C.-L. Wang, Y.-W. Hong, and Y.-S. Dai, “A decentralized positioning method for wireless sensor networks based on weighted interpolation,” in Proc. 2007 IEEE Int. Conf. on Commun. (ICC 2007), Glasgow, Scotland, June 2007, pp. 3167–3172.

    [7] A. O. Hero, III and D. Blatt, “Sensor network source localization via projection onto convex sets (POCS),” in Proc. 2005 IEEE Int. Conf. Acoustic, Speech, and Signal Processing (ICASSP 2005), Philadelphia, PA, USA, Mar. 2005, pp. 1065–1068.

    [8] H. Alasti, K. Xu, Z. Dang, “Efficient experimental path loss exponent measurement for uniformly attenuated indoor radio channels,” in Proc. 2009 IEEE Southeastcon, Florida State, U.S.A., Mar. 2009, pp. 255–260.

    [9] G. Mao, B. D. O. Anderson, B. fidan, “Path loss exponent estimation for wireless sensor network localization,” Computer Networks, 2007, vol 51, pp. 2467–2483.

    [10] S. Y. Park, H. S. Ahn, W. Yu, “Adaptive path-loss model-based indoor localization,” in Proc. 2008 IEEE Int. Conf. Consumer Electronic. (ICCE 2008), Las Vegas, U.S.A., Jan. 2008, pp. 1-2.

    [11] Y. S. Lu, C. F. Lai, C. C. Hu, T. M. Huang, X. H. Ge, “Path loss exponent estimation for indoor wireless sensor positioning,” in Proc. 2010 KSII Transaction on Internet and Information System, June 2010, vol 4, pp. 243-257.

    [12] S. Y. Seidel and T. S. Rapport, “914 MHz path loss prediction model for indoor wireless communications in multi-floored buildings,” IEEE Trans. on Antennas & Propagation, vol. 40, no. 2, pp. 207–217, Feb. 1992.

    [13] S. Phaiboon, “An empirically based path loss model for indoor wireless channels in laboratory building,” in Proc. 2002 IEEE Region Ten Conf. (TENCON 2002), vol. 2, Beijing, China, Oct. 2002, pp. 1020–1023.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE