研究生: |
李頌恩 Li, Song-En |
---|---|
論文名稱: |
新穎[4+2] 陰離子增環反應合成多取代胺基芳香化合物之研究 Studies on Synthesis of Polysubstituted Anilines Employing a Novel [4+2] Anionic Annulation |
指導教授: |
俞鐘山
Yu, Chung-Shan 夏克山 Shia, Kak-Shan |
口試委員: |
林俊成
Lin, Chun-Cheng 李靜琪 Lee, Jinq-Chyi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | [4+2] 陰離子增環 、多取代胺基芳香化合物 、聯繼Michael加成∕烯醇—腈偶合 、插烯予體 、二烯醇陰離子 、雙模路易士酸 |
外文關鍵詞: | [4+2] anionic annulation, polysubstituted aromatic amino derivatives, sequential Michael addition/enolate-nitrile coupling route, vinylogous donor, dienolate, dual mode Lewis acid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述在氯化鋅催化下以vinylogous予體進行聯繼Michael加成∕烯醇—腈偶合之 [4+2] 陰離子增環反應,合成多種在ortho位置有拉電子基之多取代胺基芳香化合物,其中氯化鋅會扮演穩定二烯醇陰離子的角色並同時增加腈基親電性以促進第二步合環反應發生。成功開發出α位腈基取代版本的vinylogous [4+2] 陰離子增環反應方法學,並拓展此方法學至非苯并結構。
This thesis describes a convenient and general synthesis of polysubstituted aromatic amino derivatives which contain an electron withdrawing group at ortho position via a sequential Michael addition/enolate-nitrile coupling route, wherein zinc chloride plays a critical role to generate the corresponding zinc dienolate intermediate. This novel [4+2] anionic annulation enables the preparation of non-benzo amino compounds in a one-step operation.
(1)Hu, Y. Q.; Zhang, S.; Xu, Z.; Lv, Z. S.; Liu, M. L.; Feng, L. S. Eur. J. Med. Chem. 2017, 141, 335.
(2)Costi, R.; Métifiot, M.; Chung, S.; Cuzzucoli Crucitti, G.; Maddali, K.; Pescatori, L.; Messore, A.; Madia, V. N.; Pupo, G.; Scipione, L.; Tortorella, S.; Di Leva, F. S.; Cosconati, S.; Marinelli, L.; Novellino, E.; Le Grice, S. F. J.; Corona, A.; Pommier, Y.; Marchand, C.; Di Santo, R. J. Med. Chem. 2014, 57, 3223.
(3)Cui, S.-F.; Addla, D.; Zhou, C.-H. J. Med. Chem. 2016, 59, 4488.
(4)Hadida, S.; Van Goor, F.; Zhou, J.; Arumugam, V.; McCartney, J.; Hazlewood, A.; Decker, C.; Negulescu, P.; Grootenhuis, P. D. J. J. Med. Chem. 2014, 57, 9776.
(5)Tonelli, M.; Vettoretti, G.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Busonera, B.; Ouhtit, A.; Farci, P.; Blois, S.; Giliberti, G.; La Colla, P. Antiviral Research 2011, 91, 133.
(6)Sepúlveda, C. S.; García, C. C.; Fascio, M. L.; D’Accorso, N. B.; Docampo Palacios, M. L.; Pellón, R. F.; Damonte, E. B. Antiviral Res. 2012, 93, 16.
(7)Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(8)Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(9)Monks, B. M.; Cook, S. P. J. Am. Chem. Soc. 2012, 134, 15297.
(10)Newcomb, E. T.; Knutson, P. C.; Pedersen, B. A.; Ferreira, E. M. J. Am. Chem. Soc. 2016, 138, 108.
(11)Saito, N.; Ichimaru, T.; Sato, Y. Org. Lett. 2012, 14, 1914.
(12)Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am. Chem. Soc. 1999, 121, 3238.
(13)Zhang, X.; Xie, X.; Liu, Y. Chem. Sci. 2016, 7, 5815.
(14)Merlic, C. A.; Aldrich, C. C.; Albaneze-Walker, J.; Saghatelian, A. J. Am. Chem. Soc. 2000, 122, 3224.
(15)Merlic, C. A.; Aldrich, C. C.; Albaneze-Walker, J.; Saghatelian, A.; Mammen, J. J. Org. Chem. 2001, 66, 1297.
(16)Merlic, C. A.; Burns, E. E. Tetrahedron Lett. 1993, 34, 5401.
(17)Merlic, C. A.; Burns, E. E.; Xu, D.; Chen, S. Y. J. Am. Chem. Soc. 1992, 114, 8722.
(18)Merlic, C. A.; Xu, D. J. Am. Chem. Soc. 1991, 113, 7418.
(19)He, Y.; Zhang, X.; Fan, X. Chem. Commun. 2014, 50, 5641.
(20)Sakthivel, K.; Srinivasan, K. J. Org. Chem. 2014, 79, 3244.
(21)Zhao, C.; Rakesh, K.; Mumtaz, S.; Moku, B.; Asiri, A. M.; Marwani, H. M.; Manukumar, H.; Qin, H.-L. RSC adv. 2018, 8, 9487.
(22)Kiselyov, A. S. Tetrahedron 2001, 57, 5321.
(23)Kiselyov, A. S. Tetrahedron Lett. 2001, 42, 3053.
(24)Kobayashi, K.; Uneda, T.; Takada, K.; Tanaka, H.; Kitamura, T.; Morikawa, O.; Konishi, H. J. Org. Chem. 1997, 62, 664.
(25)Huang, J. K.; Shia, K. S. Angew. Chem. Int. Ed. 2020 , 59 , 6540.
(26)Zhu, L. Z.; Zhou, C. S.; Yang, W.; He, S. Z.; Cheng, G. J.; Zhang, X. H.; Lee, C. S. J. Org. Chem. 2013, 78, 7912.
(27)Kang, T.-R.; Xie, J.-W.; Du, W.; Feng, X.; Chen, Y.-C. Org. Biomol.Chem. 2008, 6, 2673.
(28)Xie, J.-W.; Chen, W.; Li, R.; Zeng, M.; Du, W.; Yue, L.; Chen, Y.-C.; Wu, Y.; Zhu, J.; Deng, J.-G. Angew. Chem. Int. Ed. 2007, 46, 389.
(29)Johnson, W. S.; Shelberg, W. E. J. Am. Chem. Soc. 1945, 67, 1745.
(30)Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
(31)Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
(32)Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.
(33)Ikota, N.; Ganem, B. J. Org. Chem. 1978, 43, 1607.
(34)Liotta, D.; Barnum, C.; Puleo, R.; Zima, G.; Bayer, C.; Kezar, H. S. J. Org. Chem. 1981, 46, 2920.
(35)Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135.
(36)Fleming, F. F.; Pu, Y.; Tercek, F. J. Org. Chem. 1997, 62, 4883.
(37)Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. d. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
(38)In Handbook of Heterocyclic Chemistry; Katritzky, A. R., Ed.; Pergamon: Amsterdam, 1985, p v.
(39)Michael, J. P. Nat. Prod. Rep. 1997, 14, 605.
(40)Michael, J. P. Nat. Prod. Rep. 2004, 21, 650.
(41)Comprehensive Organic Name Reactions and Reagents 2010, 2054.
(42)Von Niementowski, S. J. Prakt. Chem. 1895, 51, 564.
(43)Kang, S.; Park, S.; Kim, K.-s.; Song, C.; Lee, Y. J. Org. Chem. 2018, 83, 2694.
(44)Ball, P. J. Antimicrob. Chemoth. 2000, 46, 17.