簡易檢索 / 詳目顯示

研究生: 林志穎
Lin, Chih-Ying
論文名稱: 帶電性胺基酸對於三指C2H2鋅指區域進核能力之角色探討
The role of charged amino acids in the nuclear transport activity of triple C2H2 zinc finger domains
指導教授: 林立元
Lin, Lih-Yuan
口試委員: 李易展
Lee, Yi-Jang
楊培銘
Yang, Pei-Ming
趙政漢
Chao, Cheng-Han
蘇士哲
Sue, Shih-Che
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 162
中文關鍵詞: C2H2鋅指進核核定位
外文關鍵詞: C2H2 zinc finger, nuclear transport, NLS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C2H2鋅指 (zinc finger, ZF) 區域為一種常見的DNA辨識結構。近來許多研究都指出C2H2鋅指區域含有核定位訊號 (nuclear localization signal, NLS) 可將蛋白帶入細胞核中。我們的研究主要探討影響三指C2H2鋅指區域進核能力的因素。我們將已知具有核定位訊號能力的三指C2H2鋅指區域進行序列比對,找出了三個高度保留性的鹼性胺基酸 (hot spots),另外在α-helix區域也發現有若干鹼性胺基酸的分布。Egr-1首先被作為研究的對象,將其帶有鋅指區域的片段與綠色螢光蛋白連結,並在該區域進行各種突變後,將它們表現在細胞中,分析綠色螢光在細胞核與質的分布並加以量化。結果顯示任意hot spot的突變都會影響Egr-1的進核。另外,將第二個鋅指 (ZF2) 上的鹼性胺基酸突變也會抑制Egr-1的進核能力。然而,進一步將ZF1與ZF3相對位置的酸性胺基酸突變成鹼性胺基酸之後回復了Egr-1的進核能力,但此回復又會進一步分別被ZF1的hot spot突變以及ZF3 α-helix區域的鹼性胺基酸突變所抑制。我們將此結果也拓展到其他的三指 C2H2鋅指家族。類似於Egr-1,SP1和KLF家族在α-helix區域的第二 (α2) 以及第三 (α3) 位置的胺基酸也有帶有電性,將這些位置置換為酸性胺基酸會使得SP1以及KLF家族成員的進核活性下降,而將任意ZF的α3置換成組胺酸之後即可回復進核能力。我們同樣證明Egr-1、SP1與KLF6的進核能力變化是由於與importin的親和力改變所造成的。此外,位於SP1、KLF6與KLF11 ZF2和ZF3 α6的鹼性胺基酸也會強化鋅指的NLS活性。然而三指C2H2鋅指區域的進核機制卻無法適用於多指C2H2鋅指蛋白如WT1與MTF-1。我們的結果證明了α-helix區域的帶電性胺基酸調控了三指 C2H2鋅指蛋白的進核能力,而且其角色具有可互換性。


    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that are involved in the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF families including KLF5, KLF6, KLF8 and KLF11. The reduced activity can be restored by substituting the α3 with histidine at any ZFs of SP1 and KLF family members. The variations in nuclear transport activity of Egr-1, SP1 and KLF6 are directly linked to the binding activity of the ZFDs with importins. Besides, basic residues at α6 of ZF2 and ZF3 enhance the NLS activity of SP1, KLF6 and KLF11. However, the mechanism may not apply to multiple C2H2 ZF proteins, such as Wilms' tumor 1 and metal responsive transcription factor 1. The results show the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.

    摘要 1 Abstract 3 縮寫表 5 中英對照表 7 第一章 緒論 9 第二章 實驗步驟與方法 29 第三章 結果 41 第四章 討論 61 參考文獻 77 圖表 87 附錄 135 期刊發表 139

    Andrade, M.A., Bork, P., 1995. HEAT repeats in the Huntington's disease protein. Nat Genet 11, 115-116.
    Baake, M., Bauerle, M., Doenecke, D., Albig, W., 2001. Core histones and linker histones are imported into the nucleus by different pathways. Eur J Cell Biol 80, 669-677.
    Bannister, A.J., Miska, E.A., Gorlich, D., Kouzarides, T., 2000. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10, 467-470.
    Bayliss, R., Littlewood, T., Stewart, M., 2000. Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99-108.
    Beak, J.Y., Kang, H.S., Kim, Y.S., Jetten, A.M., 2008. Functional analysis of the zinc finger and activation domains of Glis3 and mutant Glis3(NDH1). Nucleic Acids Res 36, 1690-1702.
    Belacortu, Y., Weiss, R., Kadener, S., Paricio, N., 2012. Transcriptional activity and nuclear localization of Cabut, the Drosophila ortholog of vertebrate TGF-beta-inducible early-response gene (TIEG) proteins. PLoS One 7, e32004.
    Bernard, D., Bedard, M., Bilodeau, J., Lavigne, P., 2013. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. J Biomol NMR 57, 103-116.
    Bouhouche, N., Syvanen, M., Kado, C.I., 2000. The origin of prokaryotic C2H2 zinc finger regulators. Trends Microbiol 8, 77-81.
    Brayer, K.J., Kulshreshtha, S., Segal, D.J., 2008. The protein-binding potential of C2H2 zinc finger domains. Cell Biochem Biophys 51, 9-19.
    Brayer, K.J., Segal, D.J., 2008. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50, 111-131.
    Brown, R.S., 2005. Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15, 94-98.
    Chapman, N.R., Perkins, N.D., 2000. Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1. J Biol Chem 275, 4719-4725.
    Chen, M.H., Ben-Efraim, I., Mitrousis, G., Walker-Kopp, N., Sims, P.J., Cingolani, G., 2005. Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha. J Biol Chem 280, 10599-10606.
    Choi, S., Yamashita, E., Yasuhara, N., Song, J., Son, S.Y., Won, Y.H., Hong, H.R., Shin, Y.S., Sekimoto, T., Park, I.Y., Yoneda, Y., Lee, S.J., 2014. Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin beta. Acta Crystallogr D Biol Crystallogr 70, 1050-1060.
    Choo, Y., Klug, A., 1993. A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. Nucleic Acids Res 21, 3341-3346.
    Chook, Y.M., Blobel, G., 1999. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 399, 230-237.
    Chook, Y.M., Blobel, G., 2001. Karyopherins and nuclear import. Curr Opin Struct Biol 11, 703-715.
    Chook, Y.M., Jung, A., Rosen, M.K., Blobel, G., 2002. Uncoupling Kapbeta2 substrate dissociation and ran binding. Biochemistry 41, 6955-6966.
    Chook, Y.M., Suel, K.E., 2011. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 1813, 1593-1606.
    Cingolani, G., Bednenko, J., Gillespie, M.T., Gerace, L., 2002. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell 10, 1345-1353.
    Cingolani, G., Petosa, C., Weis, K., Muller, C.W., 1999. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221-229.
    Clemens, K.R., Zhang, P., Liao, X., McBryant, S.J., Wright, P.E., Gottesfeld, J.M., 1994. Relative contributions of the zinc fingers of transcription factor IIIA to the energetics of DNA binding. J Mol Biol 244, 23-35.
    Conti, E., 2002. Structures of importins. Results Probl Cell Differ 35, 93-113.
    Conti, E., Kuriyan, J., 2000. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8, 329-338.
    Conti, E., Uy, M., Leighton, L., Blobel, G., Kuriyan, J., 1998. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193-204.
    Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., Matunis, M.J., 2002. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158, 915-927.
    deHaseth, P.L., Lohman, T.M., Record, M.T., Jr., 1977. Nonspecific interaction of lac repressor with DNA: an association reaction driven by counterion release. Biochemistry 16, 4783-4790.
    Depping, R., Schindler, S.G., Jacobi, C., Kirschner, K.M., Scholz, H., 2012. Nuclear transport of Wilms' tumour protein Wt1 involves importins alpha and beta. Cell Physiol Biochem 29, 223-232.
    Dilworth, D.J., Suprapto, A., Padovan, J.C., Chait, B.T., Wozniak, R.W., Rout, M.P., Aitchison, J.D., 2001. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J Cell Biol 153, 1465-1478.
    Dingwall, C., Robbins, J., Dilworth, S.M., Roberts, B., Richardson, W.D., 1988. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol 107, 841-849.
    Dovat, S., Ronni, T., Russell, D., Ferrini, R., Cobb, B.S., Smale, S.T., 2002. A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 16, 2985-2990.
    Elrod-Erickson, M., Benson, T.E., Pabo, C.O., 1998. High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6, 451-464.
    Elrod-Erickson, M., Rould, M.A., Nekludova, L., Pabo, C.O., 1996. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure 4, 1171-1180.
    Emerson, R.O., Thomas, J.H., 2009. Adaptive evolution in zinc finger transcription factors. PLoS Genet 5, e1000325.
    Fernandez-Martinez, J., Brown, C.V., Diez, E., Tilburn, J., Arst, H.N., Jr., Penalva, M.A., Espeso, E.A., 2003. Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J Mol Biol 334, 667-684.
    Fontes, M.R., Teh, T., Kobe, B., 2000. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297, 1183-1194.
    Forwood, J.K., Harley, V., Jans, D.A., 2001a. The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 276, 46575-46582.
    Forwood, J.K., Lam, M.H., Jans, D.A., 2001b. Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. Biochemistry 40, 5208-5217.
    Fried, H., Kutay, U., 2003. Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60, 1659-1688.
    Gilchrist, D., Mykytka, B., Rexach, M., 2002. Accelerating the rate of disassembly of karyopherin.cargo complexes. J Biol Chem 277, 18161-18172.
    Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T., Adam, S.A., 2004. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14, 505-514.
    Gorlich, D., Kostka, S., Kraft, R., Dingwall, C., Laskey, R.A., Hartmann, E., Prehn, S., 1995. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5, 383-392.
    Gupta, A., Christensen, R.G., Bell, H.A., Goodwin, M., Patel, R.Y., Pandey, M., Enuameh, M.S., Rayla, A.L., Zhu, C., Thibodeau-Beganny, S., Brodsky, M.H., Joung, J.K., Wolfe, S.A., Stormo, G.D., 2014. An improved predictive recognition model for Cys(2)-His(2) zinc finger proteins. Nucleic Acids Res 42, 4800-4812.
    Hall, T.M., 2005. Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15, 367-373.
    Hatayama, M., Tomizawa, T., Sakai-Kato, K., Bouvagnet, P., Kose, S., Imamoto, N., Yokoyama, S., Utsunomiya-Tate, N., Mikoshiba, K., Kigawa, T., Aruga, J., 2008. Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain. Hum Mol Genet 17, 3459-3473.
    Hood, J.K., Casolari, J.M., Silver, P.A., 2000. Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-alpha export. J Cell Sci 113 ( Pt 8), 1471-1480.
    Huang, S.M., Huang, S.P., Wang, S.L., Liu, P.Y., 2007. Importin alpha1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1. Biochem J 402, 359-366.
    Ito, T., Azumano, M., Uwatoko, C., Itoh, K., Kuwahara, J., 2009. Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 380, 28-32.
    Ito, T., Kitamura, H., Uwatoko, C., Azumano, M., Itoh, K., Kuwahara, J., 2010. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 403, 161-166.
    Iuchi, S., 2001. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58, 625-635.
    Jakel, S., Gorlich, D., 1998. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17, 4491-4502.
    Jakel, S., Mingot, J.M., Schwarzmaier, P., Hartmann, E., Gorlich, D., 2002. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 21, 377-386.
    Jiang, H., Daniels, P.J., Andrews, G.K., 2003. Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter. J Biol Chem 278, 30394-30402.
    Kalderon, D., Roberts, B.L., Richardson, W.D., Smith, A.E., 1984. A short amino acid sequence able to specify nuclear location. Cell 39, 499-509.
    Kalsoom, U.E., Klopocki, E., Wasif, N., Tariq, M., Khan, S., Hecht, J., Krawitz, P., Mundlos, S., Ahmad, W., 2013. Whole exome sequencing identified a novel zinc-finger gene ZNF141 associated with autosomal recessive postaxial polydactyly type A. J Med Genet 50, 47-53.
    Kelley, J.B., Talley, A.M., Spencer, A., Gioeli, D., Paschal, B.M., 2010. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol 11, 63.
    Kleefstra, T., Yntema, H.G., Oudakker, A.R., Banning, M.J., Kalscheuer, V.M., Chelly, J., Moraine, C., Ropers, H.H., Fryns, J.P., Janssen, I.M., Sistermans, E.A., Nillesen, W.N., de Vries, L.B., Hamel, B.C., van Bokhoven, H., 2004. Zinc finger 81 (ZNF81) mutations associated with X-linked mental retardation. J Med Genet 41, 394-399.
    Klug, A., Schwabe, J.W., 1995. Protein motifs 5. Zinc fingers. FASEB J 9, 597-604.
    Knight, R.D., Shimeld, S.M., 2001. Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biol 2, RESEARCH0016.
    Kobe, B., 1999. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol 6, 388-397.
    Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., Yanagawa, H., 2009. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284, 478-485.
    Kutay, U., Bischoff, F.R., Kostka, S., Kraft, R., Gorlich, D., 1997. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061-1071.
    LaCasse, E.C., Lefebvre, Y.A., 1995. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23, 1647-1656.
    Laity, J.H., Chung, J., Dyson, H.J., Wright, P.E., 2000a. Alternative splicing of Wilms' tumor suppressor protein modulates DNA binding activity through isoform-specific DNA-induced conformational changes. Biochemistry 39, 5341-5348.
    Laity, J.H., Dyson, H.J., Wright, P.E., 2000b. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. J Mol Biol 295, 719-727.
    Lam, M.H., Briggs, L.J., Hu, W., Martin, T.J., Gillespie, M.T., Jans, D.A., 1999. Importin beta recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin alpha. J Biol Chem 274, 7391-7398.
    Lange, A., Mills, R.E., Devine, S.E., Corbett, A.H., 2008. A PY-NLS nuclear targeting signal is required for nuclear localization and function of the Saccharomyces cerevisiae mRNA-binding protein Hrp1. J Biol Chem 283, 12926-12934.
    Laskey, R.A., Dingwall, C., 1993. Nuclear shuttling: the default pathway for nuclear proteins? Cell 74, 585-586.
    Lee, B.J., Cansizoglu, A.E., Suel, K.E., Louis, T.H., Zhang, Z., Chook, Y.M., 2006. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126, 543-558.
    Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A., Wright, P.E., 1989. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 635-637.
    Lee, S.J., Matsuura, Y., Liu, S.M., Stewart, M., 2005. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693-696.
    Leenders, J.J., Wijnen, W.J., van der Made, I., Hiller, M., Swinnen, M., Vandendriessche, T., Chuah, M., Pinto, Y.M., Creemers, E.E., 2012. Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS One 7, e36754.
    Leslie, D.M., Zhang, W., Timney, B.L., Chait, B.T., Rout, M.P., Wozniak, R.W., Aitchison, J.D., 2004. Characterization of karyopherin cargoes reveals unique mechanisms of Kap121p-mediated nuclear import. Mol Cell Biol 24, 8487-8503.
    Lindert, U., Cramer, M., Meuli, M., Georgiev, O., Schaffner, W., 2009. Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 29, 6283-6293.
    Lindsay, M.E., Plafker, K., Smith, A.E., Clurman, B.E., Macara, I.G., 2002. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell 110, 349-360.
    Loeb, J.D., Davis, L.I., Fink, G.R., 1993. NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex. Mol Biol Cell 4, 209-222.
    Lott, K., Cingolani, G., 2011. The importin beta binding domain as a master regulator of nucleocytoplasmic transport. Biochim Biophys Acta 1813, 1578-1592.
    Lu, H., Wang, X., Li, T., Urvalek, A.M., Yu, L., Li, J., Zhu, J., Lin, Q., Peng, X., Zhao, J., 2011. Identification of poly (ADP-ribose) polymerase-1 (PARP-1) as a novel Kruppel-like factor 8-interacting and -regulating protein. J Biol Chem 286, 20335-20344.
    Mackay, D.J., Callaway, J.L., Marks, S.M., White, H.E., Acerini, C.L., Boonen, S.E., Dayanikli, P., Firth, H.V., Goodship, J.A., Haemers, A.P., Hahnemann, J.M., Kordonouri, O., Masoud, A.F., Oestergaard, E., Storr, J., Ellard, S., Hattersley, A.T., Robinson, D.O., Temple, I.K., 2008. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40, 949-951.
    Mackay, J.P., Crossley, M., 1998. Zinc fingers are sticking together. Trends Biochem Sci 23, 1-4.
    Maheswaran, S., Park, S., Bernard, A., Morris, J.F., Rauscher, F.J., 3rd, Hill, D.E., Haber, D.A., 1993. Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci U S A 90, 5100-5104.
    Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F., Curmi, P.M., Forwood, J.K., Boden, M., Kobe, B., 2011. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 1813, 1562-1577.
    Matheny, C., Day, M.L., Milbrandt, J., 1994. The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem 269, 8176-8181.
    Matsubayashi, Y., Fukuda, M., Nishida, E., 2001. Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J Biol Chem 276, 41755-41760.
    Matsuura, Y., Lange, A., Harreman, M.T., Corbett, A.H., Stewart, M., 2003. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J 22, 5358-5369.
    Mehta, T.S., Lu, H., Wang, X., Urvalek, A.M., Nguyen, K.H., Monzur, F., Hammond, J.D., Ma, J.Q., Zhao, J., 2009. A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Res 19, 1098-1109.
    Milburn, M.V., Tong, L., deVos, A.M., Brunger, A., Yamaizumi, Z., Nishimura, S., Kim, S.H., 1990. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939-945.
    Miller, J., McLachlan, A.D., Klug, A., 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4, 1609-1614.
    Mingot, J.M., Vega, S., Maestro, B., Sanz, J.M., Nieto, M.A., 2009. Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. J Cell Sci 122, 1452-1460.
    Mishra, A., Eathiraj, S., Corvera, S., Lambright, D.G., 2010. Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proc Natl Acad Sci U S A 107, 10866-10871.
    Mitrousis, G., Olia, A.S., Walker-Kopp, N., Cingolani, G., 2008. Molecular basis for the recognition of snurportin 1 by importin beta. J Biol Chem 283, 7877-7884.
    Moore, J.D., Yang, J., Truant, R., Kornbluth, S., 1999. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 144, 213-224.
    Morrison, A.A., Viney, R.L., Ladomery, M.R., 2008. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta 1785, 55-62.
    Mosammaparast, N., Jackson, K.R., Guo, Y., Brame, C.J., Shabanowitz, J., Hunt, D.F., Pemberton, L.F., 2001. Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J Cell Biol 153, 251-262.
    Muhlhausser, P., Muller, E.C., Otto, A., Kutay, U., 2001. Multiple pathways contribute to nuclear import of core histones. EMBO Rep 2, 690-696.
    Nagoshi, E., Imamoto, N., Sato, R., Yoneda, Y., 1999. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 10, 2221-2233.
    Najafabadi, H.S., Mnaimneh, S., Schmitges, F.W., Garton, M., Lam, K.N., Yang, A., Albu, M., Weirauch, M.T., Radovani, E., Kim, P.M., Greenblatt, J., Frey, B.J., Hughes, T.R., 2015. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat Biotechnol 33, 555-562.
    Nardozzi, J., Wenta, N., Yasuhara, N., Vinkemeier, U., Cingolani, G., 2010. Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Mol Biol 402, 83-100.
    Oka, S., Shiraishi, Y., Yoshida, T., Ohkubo, T., Sugiura, Y., Kobayashi, Y., 2004. NMR structure of transcription factor Sp1 DNA binding domain. Biochemistry 43, 16027-16035.
    Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M., Clore, G.M., 1997. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol 4, 122-132.
    Paine, P.L., Moore, L.C., Horowitz, S.B., 1975. Nuclear envelope permeability. Nature 254, 109-114.
    Pandya, K., Townes, T.M., 2002. Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277, 16304-16312.
    Pavletich, N.P., Pabo, C.O., 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809-817.
    Peisach, E., Pabo, C.O., 2003. Constraints for zinc finger linker design as inferred from X-ray crystal structure of tandem Zif268-DNA complexes. J Mol Biol 330, 1-7.
    Persikov, A.V., Singh, M., 2014. De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res 42, 97-108.
    Petosa, C., Schoehn, G., Askjaer, P., Bauer, U., Moulin, M., Steuerwald, U., Soler-Lopez, M., Baudin, F., Mattaj, I.W., Muller, C.W., 2004. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16, 761-775.
    Poon, I.K., Jans, D.A., 2005. Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173-186.
    Quadrini, K.J., Bieker, J.J., 2002. Kruppel-like zinc fingers bind to nuclear import proteins and are required for efficient nuclear localization of erythroid Kruppel-like factor. J Biol Chem 277, 32243-32252.
    Rauscher, F.J., 3rd, Morris, J.F., Tournay, O.E., Cook, D.M., Curran, T., 1990. Binding of the Wilms' tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 250, 1259-1262.
    Reichelt, R., Holzenburg, A., Buhle, E.L., Jr., Jarnik, M., Engel, A., Aebi, U., 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 110, 883-894.
    Revzin, A., von Hippel, P.H., 1977. Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistry 16, 4769-4776.
    Rexach, M., Blobel, G., 1995. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683-692.
    Rizkallah, R., Alexander, K.E., Hurt, M.M., 2011. Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. Cell Cycle 10, 3327-3336.
    Rizkallah, R., Hurt, M.M., 2009. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 20, 4766-4776.
    Rodriguez, E., Aburjania, N., Priedigkeit, N.M., DiFeo, A., Martignetti, J.A., 2010. Nucleo-cytoplasmic localization domains regulate Kruppel-like factor 6 (KLF6) protein stability and tumor suppressor function. PLoS One 5.
    Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor Miklos, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W., Cherry, J.M., Henikoff, S., Skupski, M.P., Misra, S., Ashburner, M., Birney, E., Boguski, M.S., Brody, T., Brokstein, P., Celniker, S.E., Chervitz, S.A., Coates, D., Cravchik, A., Gabrielian, A., Galle, R.F., Gelbart, W.M., George, R.A., Goldstein, L.S., Gong, F., Guan, P., Harris, N.L., Hay, B.A., Hoskins, R.A., Li, J., Li, Z., Hynes, R.O., Jones, S.J., Kuehl, P.M., Lemaitre, B., Littleton, J.T., Morrison, D.K., Mungall, C., O'Farrell, P.H., Pickeral, O.K., Shue, C., Vosshall, L.B., Zhang, J., Zhao, Q., Zheng, X.H., Lewis, S., 2000. Comparative genomics of the eukaryotes. Science 287, 2204-2215.
    Saijou, E., Itoh, T., Kim, K.W., Iemura, S., Natsume, T., Miyajima, A., 2007. Nucleocytoplasmic shuttling of the zinc finger protein EZI Is mediated by importin-7-dependent nuclear import and CRM1-independent export mechanisms. J Biol Chem 282, 32327-32337.
    Sanchez-Garcia, I., Rabbitts, T.H., 1994. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet 10, 315-320.
    Saydam, N., Georgiev, O., Nakano, M.Y., Greber, U.F., Schaffner, W., 2001a. Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276, 25487-25495.
    Saydam, N., Georgiev, O., Nakano, M.Y., Greber, U.F., Schaffner, W., 2001b. Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. Journal of Biological Chemistry 276, 25487-25495.
    Schaub, M., Krol, A., Carbon, P., 1999. Flexible zinc finger requirement for binding of the transcriptional activator staf to U6 small nuclear RNA and tRNA(Sec) promoters. J Biol Chem 274, 24241-24249.
    Schmidt-Zachmann, M.S., Dargemont, C., Kuhn, L.C., Nigg, E.A., 1993. Nuclear export of proteins: the role of nuclear retention. Cell 74, 493-504.
    Sekimoto, T., Miyamoto, Y., Arai, S., Yoneda, Y., 2011. Importin alpha protein acts as a negative regulator for Snail protein nuclear import. J Biol Chem 286, 15126-15131.
    Senger, B., Simos, G., Bischoff, F.R., Podtelejnikov, A., Mann, M., Hurt, E., 1998. Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J 17, 2196-2207.
    Seto, E., Lewis, B., Shenk, T., 1993. Interaction between transcription factors Sp1 and YY1. Nature 365, 462-464.
    Shields, J.M., Yang, V.W., 1997. Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. J Biol Chem 272, 18504-18507.
    Siomi, H., Dreyfuss, G., 1995. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 129, 551-560.
    Spittau, B., Wang, Z., Boinska, D., Krieglstein, K., 2007. Functional domains of the TGF-beta-inducible transcription factor Tieg3 and detection of two putative nuclear localization signals within the zinc finger DNA-binding domain. J Cell Biochem 101, 712-722.
    Spolar, R.S., Record, M.T., Jr., 1994. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777-784.
    Stubbs, L., Sun, Y., Caetano-Anolles, D., 2011. Function and Evolution of C2H2 Zinc Finger Arrays. Subcell Biochem 52, 75-94.
    Suzuki, K., Otsuka, F., Yamada, H., Koizumi, S., 2015. Analysis of cysteine and histidine residues required for zinc response of the transcription factor human MTF-1. Biol Pharm Bull 38, 611-617.
    Truant, R., Cullen, B.R., 1999. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19, 1210-1217.
    Tunbak, H., Georgiou, C., Guan, C., Richardson, W.D., Chittka, A., 2016. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation. Biochem Biophys Res Commun 474, 388-394.
    UniProt, C., 2007. The Universal Protein Resource (UniProt). Nucleic Acids Res 35, D193-197.
    Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., Luscombe, N.M., 2009. A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10, 252-263.
    Vasanth, S., ZeRuth, G., Kang, H.S., Jetten, A.M., 2011. Identification of nuclear localization, DNA binding, and transactivating mechanisms of Kruppel-like zinc finger protein Gli-similar 2 (Glis2). J Biol Chem 286, 4749-4759.
    Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D., Wittinghofer, A., 1999a. Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 97, 635-646.
    Vetter, I.R., Nowak, C., Nishimoto, T., Kuhlmann, J., Wittinghofer, A., 1999b. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39-46.
    Vetter, I.R., Wittinghofer, A., 2001. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.
    Wang, W., Yang, X., Kawai, T., Lopez de Silanes, I., Mazan-Mamczarz, K., Chen, P., Chook, Y.M., Quensel, C., Kohler, M., Gorospe, M., 2004. AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1: involvement in the nuclear import of RNA-binding protein HuR. J Biol Chem 279, 48376-48388.
    Weighardt, F., Biamonti, G., Riva, S., 1995. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J Cell Sci 108 ( Pt 2), 545-555.
    Weis, K., 2003. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451.
    Wolfe, S.A., Nekludova, L., Pabo, C.O., 2000. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29, 183-212.
    Xu, D., Farmer, A., Chook, Y.M., 2010. Recognition of nuclear targeting signals by Karyopherin-beta proteins. Curr Opin Struct Biol 20, 782-790.
    Yang, C.P., Chiang, C.W., Chen, C.H., Lee, Y.C., Wu, M.H., Tsou, Y.H., Yang, Y.S., Chang, W.C., Lin, D.Y., 2015. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). J Biomed Sci 22, 33.
    Yang, M., May, W.S., Ito, T., 1999. JAZ requires the double-stranded RNA-binding zinc finger motifs for nuclear localization. J Biol Chem 274, 27399-27406.
    Yasuhara, N., Oka, M., Yoneda, Y., 2009. The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 20, 590-599.
    Zachariae, U., Grubmuller, H., 2008. Importin-beta: structural and dynamic determinants of a molecular spring. Structure 16, 906-915.
    Zhai, G., Iskandar, M., Barilla, K., Romaniuk, P.J., 2001. Characterization of RNA aptamer binding by the Wilms' tumor suppressor protein WT1. Biochemistry 40, 2032-2040.

    QR CODE