研究生: |
葉東昇 Yeh, Tung-Sheng |
---|---|
論文名稱: |
反應濺鍍氮化銦鋁薄膜及其特性研究 Growth and characterization of reactive-sputtering AlInN thin films |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 180 |
中文關鍵詞: | 氮化銦鋁 、反應式濺鍍 、光學能隙 、彈性模數 、奈米壓痕 |
外文關鍵詞: | AlInN, Reactive sputtering, Optical bandgap, Young's modulus, Nanoindentation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,整個三-五族氮化物家族包含氮化鋁、氮化鎵、氮化銦及其三元化合物,在發光元件的蓬勃發展與太陽能電池材料的應用開發,使其相關研究備受矚目。其中的氮化銦鋁(AlxIn1-xN, AlInN)擁有最大的能隙與晶格常數調變範圍,最具發展潛力,但因AlN與InN的生長條件差異大、鍍膜難度最高,以致相關研究最少。
本研究嘗試以脈衝直流反應式濺鍍技術在玻璃基板生長AlInN薄膜:首先,鋁含量為0.36與0.55的AlInN直接濺鍍在玻璃基板,溫度由200 oC升至400 oC有助改善薄膜結晶品質,但會伴隨界面擴散與氧污染問題。經由先在玻璃上製作AlN緩衝層,能顯著提升AlInN薄膜結晶品質、抑制氧污染現象,所得AlInN擁有c軸優選方向,(002)半高寬僅2.9°~3.5°,電子濃度顯著降低,有助於研究AlInN的物理性質。
在光電性質研究上,選擇在AlN/玻璃基板上反應濺鍍x= 0.12~ 0.87的AlInN薄膜,所有成分範圍的 AlInN均具有c軸優選方向,(002)半高寬介於2.6°~3.6°之間,且薄膜內部完全不含氧。在x = 0.12~0.49成分區域,薄膜的電子濃度為1×1016~3×1020 cm-3,經由吸收光譜決定各成分的光學能隙值,並比較相關文獻,確認x ≤ 0.26的AlInN能隙偏高現象源於Burstein-Moss效應,並估算AlInN三元化合物的能隙彎曲係數(Bowing parameter)為4.1 eV。
在機械性質研究方面,以奈米壓痕技術(Nanoindentation)進行量測,再分別以10%薄膜厚度經驗法則與指數函數(Exponential function)回歸法,解析AlInN的薄膜硬度與彈性模數。AlInN的彈性模數測量值隨鋁含量增加而上升,在x = 0與x= 1時分別為105 GPa與300 GPa,而在晶格常數與GaN匹配區域(x = 0.82~0.84),彈性模數約為275 GPa。經考量InN薄膜的氧污染效應,並比較相關文獻,推估InN合理的彈性模數值約為130 GPa。AlInN的薄膜硬度與成分分布,存有一最大值,應是源於固溶硬化效應。
In recent years, III-N materials such as AlN, GaN, InN and their ternary compounds have attracted great interest in applications such as light-emitting diodes, laser diodes, and solar cells etc. AlxIn1-xN (AlInN) compounds are expected to have immense potential in this field of applications because they possess the widest spectral and lattice constant range in all III-N compounds. There were few reports on the growth of AlInN ternary films due to the large miscibility gap and difference in the thermal stability between AlN and InN.
In this study, AlInN films were grown on glass substrates by pulsed-dc reactive sputtering. XRD analysis showed that the crystallinity of In-rich Al0.36In0.64N and Al-rich Al0.55In0.45N films directly deposited on glass improved as substrate temperature increased from 200 oC to 400 oC. However, for temperatures ≥300 oC, oxygen-diffusion was observed in the whole range from the glass substrate to the AlInN film by XPS analysis. After applying AlN buffer layer, the crystallinity of AlInN films was markedly improved and no oxygen contamination was observed. Highly c-axis-oriented AlInN films with very low FWHM of 2.9°~3.5° were obtained. The electron concentration of AlN-buffered AlInN films was obviously lower than that of oxygen contaminated films.
In the study of optical bandgap, AlInN films with x = 0.12~0.87 grown on AlN/glass have highly c-axis preferred orientation and excellent crystal quality. The FWHM of (002) plane is between 2.6 o and 3.6 o. There is no oxygen detected in the bulk of AlInN films. The electron concentrations of sputtered In-rich AlInN films (x = 0.12~0.49) are in the range of 1×1016~3×1020 cm-3. The bandgaps of AlInN films are determined and compared with previous reports. The bandgap discrepancy of In-rich AlInN can be explained by the Burstein-Moss effect. The bowing parameter for bandgaps of AlInN alloys is 4.1 eV.
Mechanical properties of AlInN films were characterized by nanoindentation. The film hardness was determined by the 10% rule and the elastic modulus was analyzed by a regression method using the exponential function. Elastic modulus of the AlInN films increases monotonously with the content of AlN ranging from 105 GPa to 300 GPa. The elastic modulus of the AlInN films with x = 0.82~0.84 which are lattice-matched with the GaN is found to be 275 GPa. After considering the effect of oxygen contamination and comparing with previous reports, the elastic modulus of the InN film is determined to be 130 GPa. A maximal hardness of 24.0 GPa occurs at x = 0.77. The maximum in hardness is considered to be caused by solid-solution hardening.
參考資料:
1. H. Morkoc, Nitride semiconductors and devices, Springer, Berlin, 1999.
2. S. F. Chichibu and S. Nakamura, Introduction to nitride semiconductor blue lasers and light emitting diodes, Taylor & Francis, London, 2000.
3. S. Strite and H. Morkoc, GaN, AlN, and InN: a review, J. Vac. Sci. Technol. B10 (1992) 1237-1266.
4. D. S. N. Mohammad and H. Morkoc, Progress and prospects of groups- III nitride semiconductors, Prog. Quant. Electr. 20 (1996) 361-525.
5. O. Ambacher, Growth and applications of group III-nitrides, J. Phys. D: Appl. Phys. 31 (1998) 2653-2710.
6. A. J. Noreika, M. H. Francombe and S. A. Zeitman, Dielectric properties of reactively sputtered films of aluminum nitride, J. Vas. Sci. Technol. (1969) 194- 197.
7. T. Shiosaki, T. Yamamoto, T. Oda and A. Kawabata, Low-temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering, Appl. Phys. Lett. 36 (1980) 643.
8. F. Takeda and T. Hata, Low temperature deposition of oriented c-axis AlN films on glass substrates by reactive magnetron sputtering, Jpn. J. Appl. Phys. 19 (1980) 1001-1002.
9. J. S. Wang and K. M. Lakin, Sputtered AlN films for bulk-acoustic-wave devices, 1981 IEEE Ultrason. Symp. 502.
10. L. G. Pearce, R. L. Gunshor and R. F. Pierret, Aluminum nitride on silicon surface acoustic wave devices, Appl. Phys. Lett. 39 (1981) 878.
11. M. Morita, N. Uesugi, S. Isogai, K. Tsubouchi and N. Mikoshiba, Epitaxial growth of aluminum nitride on sapphire using metalorganic chemical vapor deposition, Jpn. J. Appl. Phys. 20 (1981) 17-23.
12. G. Este and W. D. Westwood, A quasi-direct-current sputtering technique for the deposition of dielectrics at enhanced rates, J. Vac. Sci. Technol. A6 (1988) 1845- 1848.
13. H. M. Liaw, W. Cronin and F. S. Hickernell, The SAW characteristics of sputtered aluminum nitride on silicon, 1993 IEEE Ultrason. Symp. 267-271.
14. H. Okano, N. Tanaka, K. Shibata and S. Nakano, GHz-band surface acoustic wave devices using aluminum nitride thin films deposited by electron cyclotron resonance dual ion-beam sputtering, Jpn. J. Appl. Phys. 32 (1993) 4052-4056.
15. K. Wongchotigul, N. Chen, D. P. Zhang, X. Tang, M. G. Spencer, Low resistivity aluminum nitride: Carbon (AlN:C) films grown by metal organic chemical vapor deposition, Materials Lett. 26 (1996) 223-226.
16. C. Caliendo and P. Imperatorim, High-frequency, high-sensitivity acoustic sensor implemented on AlN/Si substrate, Appl. Phys. Lett. 83 (2003) 1641.
17. Y. Satoh, T. Nishihara, T. Yokoyama, M. Ueda and T. Miyashita, Development of piezoelectric thin film resonator and its Impact on future wireless communication systems, Jpn. J. Appl. Phys. 44 (2005) 2883-94.
18. R. Ruby, Review and comparison of bulk acoustic wave FBAR, SMR technology, 2007 IEEE Ultrasonic. Symp. 1029-1040.
19. R. Aigner, SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses, 2008 IEEE Ultrasonic. Symp. 582-589.
20. Y. Taniyasu, M. Kasu and T. Makimoto, Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100 cm2/V.s), Appl. Phys. Lett. 85 (2004) 4672.
21. Y. Taniyasu, M. Kasu and T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature 441 (2006) 325-328.
22. S. J. Pearton, F. Ren, A. P. Zhang and K. P. Lee, Fabrication and performance of GaN electronic devices, Mater. Sci. Eng. R 30 (2000) 55-212.
23. A. P. Zhang, F. Ren, T. J. Anderson, C. R. Abernathy, R. K. Singh, P. H. Holloway, S. J. Pearton, D. Palmer and G. E. McGuire, High-power GaN electronic devices, Critical Rev. Solid State Mater. Sci. 27 (2002) 1-71.
24. T. Matsuoka, Progress in nitride semiconductors from GaN to InN- MOVPE growth and characteristics, Superlatt. Microstruct. 37 (2005) 19-32.
25. I. Akasaki, Key inventions in the history of nitride-based blue LED and LD, J. Cryst. Growth 300 (2007) 2-10.
26. H. J. Hovel and J. J. Cuomo, Electrical and optical properties of rf-sputtered GaN and InN, Appl. Phys. Lett. 20 (1972) 71.
27. J. W. Trainor and K. Rose, J. Electron. Mater. 3 (1974) 821.
28. K. Osamura, S. Naka and Y. Murakami, Preparation and optical properties of Ga1−xInxN thin films, J. Appl. Phys. 46 (1975) 3432-3436.
29. N. Puychevrier and M. Menoret, Synthesis of III–V semiconductor nitrides by reactive cathodic sputtering, Thin Solid Films 36 (1976) 141.
30. T. L. Tansley and C. P. Foley, Electron mobility in indium nitride, Electron. Lett. 20 (1984) 1066-1068.
31. T. L. Tansley and C. P. Foley, Optical band gap of indium nitride, J. Appl. Phys.59 (1986) 3241-3244.
32. A. Wakahara and A. Yoshida, Heteroepitaxial growth of InN by microwave- excited metalorganic vapor phase epitaxy, Appl. Phys. Lett. 54 (1989) 709.
33. V. Yu Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthm□ller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Absorption and emission of hexagonal InN- evidence of narrow fundamental band gap, Phys. Stat. Sol (b) 229 (2002) R1-R3.
34. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett. 80 (2002) 3967.
35. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, Optical bandgap energy of wurtzite InN, Appl. Phys. Lett. 81 (2002) 1246.
36. A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, Indium nitride: A review on growth, characterization and properties, J. Appl. Phys. 94 (2003) 2779-2808.
37. K. S. A. Butcher and T. L. Tansley, InN, latest development and a review of the band-gap controversy, Superlatt. Microstruct. 38 (2005) 1-37.
38. B. Monemar, P. P. Paskov and A. Kasic, Optical properties of InN- the bandgap question, Superlatt. Microstruct. 38 (2005) 38-56.
39. R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu and W. J. Schaff, Evidence for p-type doping of InN, Phys. Rev. Lett. 96 (2006) 125505.
40. J.-F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butt□ and N. Grandjean, Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials, Phys. Stat. Sol. (b) 242 (2005) 2326- 2344.
41. S. Arulkumaran, G. I. Ng, C. L. Tan, Z. H. Liu, J. Bu, K. Radhakrishnan, T. Aggerstam, M. Sj□din and S. Lourdudoss, Enhancement of both direct-current and microwave characteristics of AlGaN/GaN high-electron-mobility transistors by furnace annealing, Appl. Phys. Lett. 88 (2006) 023502.
42. H. Okumura, Present status and future prospect of widegap semiconductor high- power devices, Jpn. J. Appl. Phys. 45 (2006) 7565-86.
43. E. Munoz, (Al, In, Ga)N-based photodetectors. Some materials issues, Phys. Stat. Sol. (b) 244 (2007) 2859-77.
44. E. F. Schubert, J. K. Kim, H. Luo and J-Q Xi, Solid-state lighting- a benevolent technology, Rep. Prog. Phys. 69 (2006) 3069-99.
45. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger and S. Kurtz, Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system, J. Appl. Phys. 94 (2003) 6477-82.
46. H. Neff, O. K. Semchinova, A. M. N. Lima, A. Filimonov and G. Holzhueter, Photovoltaic properties and technological aspects of In1−xGaxN/Si, Ge (0<x<0.6) heterojunction solar cells, Sol. Energy Mate. Sol. Cells 90 (2006) 982-97.
47. O. Jani, I. Ferguson, C. Honsberg and S. Kurtz, Design and characterization of GaN/InGaN solar cells, Appl. Phys. Lett. 91 (2007) 132117.
48. L. Hsu and W. Walukiewicz, Modeling of InGaN/Si tandem solar cells, J. Appl. Phys. 104 (2008) 024507.
49. A. Marti and G. L. Arafijo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Sol. Energy Mater. Sol. Cells 43 (1996) 203-222.
50. T. Matsouka, Calculation of unstable mixing region in wurtzite In1-x-yGaxAlyN, Appl. Phys. Lett. 71 (1997) 105.
51. M. Marques, L. K. Teles, L. M. R. Scolfaro, L. G. Ferreira and J. R. Leite, Microscopic description of the phase separation process in AlxGayIn1−x−yN quaternary alloys, Phys. Rev. B 70 (2004) 073202.
52. K. Starosta, RF sputtering of AlxIn1-xN thin films, Phys. Stat. Sol. (a) 68 (1981) K55-K57.
53. K. Kubota, Y. Kobayashi and K. Fujimoto, Preparation and properties of III-V nitride thin films, J. Appl. Phys. 66 (1989) 2984-2988.
54. Q. X. Guo, H. Ogawa, and A. Yoshida, Growth of AlxIn1−xN single crystal films by microwave-excited metalorganic vapor phase epitaxy, J. Cryst. Growth 146 (1995) 462-66.
55. C. R. Abernathy, J. D. MacKenzie, S. R. Bharatan, K. S. Jones, and S. J. Pearton, Growth of InxGa1–xN and InxAl1–xN on GaAs metalorganic molecular beam epitaxy, J. Vac. Sci. Technol. A13 (1995) 716-18.
56. K. S. Kim, A. Saxler, P. Kung, and M. Razeghi, Determination of the band-gap energy of Al1-xInxN grown by metal–organic chemical-vapor deposition, Appl. Phys. Lett. 71 (1997) 800.
57. T. Peng, J. Piprek, G. Qiu, J. O. Olowolafe, K. M. Unruh, C. P. Swann and E. F. Schubert, Band gap bowing and refractive index spectra of polycrystalline Al1-xInxN films deposited by sputtering, Appl. Phys. Lett. 71 (1997) 2439.
58. S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, Observation of photoluminescence from Al1-xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 73 (1998) 830.
59. J. Kuzm□k, Power electronics on InAlN/(In)GaN: prospect for a record performance, IEEE Electron. Dev. Lett. 22 (2001) 510-512.
60. S. Yamaguchi, Y. Iwamura, and A. Yamamoto, Thermoelectric properties of electrically conductive III-Oxynitrides of Al1–xInxOsNt and InOsNt prepared by radio-frequency reactive sputtering: toward a thermopower device, Jpn. J. Appl. Phys. 41 (2002) L1354-L1356.
61. J.-F. Carlin and M. Ilegems, High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN, Appl. Phys. Lett. 83 (2003) 668.
62. T. Sepp□nen, P. O. □. Persson, L. Hultman, J. Birch and G. Z. Radn□czi, Magnetron sputter epitaxy of wurtzite Al1-xInxN (0.1< x<0.9) by dual reactive dc magnetron sputter deposition, J. Appl. Phys. 97 (2005) 083503.
63. W. Terashima, S. B. Che, Y. Ishitani and A. Yoshikawa, Growth and characterization of AlInN ternary alloys in whole composition range and fabrication of InN/AlInN multiple quantum wells by RF molecular beam epitaxy, Jpn. J. Appl. Phys. 45 (2006) L539-L542.
64. E. Sillero, D. Lopez-Romero, F. Calle, M. Eickho, J. F. Carlin, N. Grandjean and M. Ilegems, Selective etching of AlInN/GaN heterostructures for MEMS technology, Microelectron. Eng. 84 (2007) 1152-1156.
65. R. Butte, J.-F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G. Baldassarri, H. von Hogersthal, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G. Lagoudakis, J. J. Baumberg and N. Grandjean, Current status of AlInN layers lattice-matched to GaN for photonics and electronics, J. Phys. D: Appl. Phys. 40 (2007) 6328–6344.
66. A. Lupu, F. H. Julien, S. Golka, G. Pozzovivo, G. Strasser, E. Baumann, F. Giorgetta, D. Hofstetter, S. Nicolay, M. Mosca, E. Feltin, J. F. Carlin and N. Grandjean, Lattice-matched GaN–InAlN waveguides at λ = 1.55 um grown by metal-organic vapor phase epitaxy, IEEE Photonics Technol. Lett. 20 (2008) 102-104.
67. Q. X. Guo, A. Okada, H. Kidera, M. Nishio and H. Ogawa, Growth of AlInN on (111) GaAs substrates, Jpn. J. Appl. Phys. 39 (2000) L1143-L1145.
68. Q. X. Guo, T. Tanaka, M. Nishio and H. Ogawa, Optical bandgap energy of wurtzite In-rich AlInN alloys, Jpn. J. Appl. Phys. 42 (2003) L141-L143.
69. Q. X. Guo, Y. Okazaki, Y. Kume, T. Tanaka, M. Nishio and H. Ogawa, Reactive sputter deposition of AlInN thin films, J. Cryst. Growth 300 (2007) 151-54.
70. S. Yamaguchi, Y. Iwamura and A. Yamamoto, Thermoelectric properties of Al1−xInxN and Al1−y-zGa yInzN prepared by radio-frequency sputtering: Toward a thermoelectric power device, Appl. Phys. Lett. 82 (2003) 2065.
71. S. Yamaguchi, R. Izaki, N. Kaiwa, S. Sugimura and A. Yamamoto, Thermoelectric devices using InN and Al1−xInxN thin films prepared by reactive radio-frequency sputtering, Appl. Phys. Lett. 84 (2004) 5344.
72. S. Yamaguchi, R. Izaki, Y. Iwamura and A. Yamamoto, Thermoelectric and thermal properties of AlInN thin films prepared by reactive radio-frequency sputtering, Phys. Stat. Sol. (a) 201 (2004) 225-228.
73. T. Sepp□nen, L. Hultman and J. Birch, 248 nm cathodoluminescence in Al1-xInxN (0001) thin films grown on lattice-matched Ti1−yZryN (111) seed layers by low temperature magnetron sputter epitaxy, Appl. Phys. Lett. 89 (2006) 181928.
74. S. Yamaguchi, M. Kariya, S. Nitta, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy, J. Cryst. Growth 195 (1998) 309-313.
75. S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, Anomalous features in the optical properties of Al1-xInxN on GaN grown by metal organic vapor phase epitaxy, Appl. Phys. Lett. 76 (2000) 876.
76. T. Onuma, S. F. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano and I. Akasaki, Recombination dynamics of localized excitons in Al1-xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy, J. Appl. Phys. 94 (2003) 2449-2453.
77. T. Fujimori, H. Imai, A. Wakahara, H. Okada, A. Yoshida, T. Shibata and M. Tanaka, Growth and characterization of AlInN on AlN template, J. Cryst. Growth 272 (2004) 381-85.
78. C. Hums, J. Bl□sing, A. Dadgar, A. Diez, T. Hempel, J. Christen, A. Krost, K. Lorenz and E. Alves, Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range, Appl. Phys. Lett. 90 (2007) 022105.
79. M. J. Lukitsch, Y. V. Danylyuk, V. M. Naik, C. Huang, G. W. Auner, L. Rimai and R. Naik, Optical and electrical properties of Al1–xInxN films grown by plasma source molecular-beam epitaxy, Appl. Phys. Lett. 79 (2001) 632.
80. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu and W. J. Schaff, Universal bandgap bowing in group-III nitride alloys, Solid State Comm. 127 (2003) 411-414.
81. R. Goldhahn, P. Schley, A. T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, M. Rakel, C. Cobet, N. Esser, H. Lu and W. J. Schaff, Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys, Phys. Stat. Sol. (a) 203 (2006) 42-49.
82. W. Terashima, S. B. Che, Y. Ishitani and A. Yoshikawa, Growth and characterization of AlInN ternary alloys in whole composition range and fabrication of InN/AlInN multiple quantum wells by RF molecular beam epitaxy, Jpn. J. Appl. Phys. 45 (2006) L539-L542.
83. E. Iliopoulos, A. Adikimenakis, C. Giesen, M. Heuken and A. Georgakilas, Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry, Appl. Phys. Lett. 92 (2008) 191907.
84. B. Chapman, Glow discharge processes, 1980.
85. W. D. Westwood and S. Ismat Shah ed., Handbook of thin film process technology, IOP Publishing Ltd., 1995.
86. S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of plasma processing technology, Ch.6, Magnetron plasma deposition processes, 1990.
87. J. Musil, Recent advances in magnetron sputtering technology, Surf. Coat. Technol. 100-101 (1998) 280-286.
88. www.angstromsciences.com/.../index.html
89. B. Window and N. Savvides, Unbalanced dc magnetron as sources of high ion fluxes, J. Vac. Sci. Technol. A4 (1986) 453-56.
90. N. Savvides and B. Window, Unbalanced magnetron ion-assisted deposition and property modification of thin films, J. Vac. Sci. Technol. A4 (1986) 504-508.
91. www.pvd-coatings.co.uk/theory-of-pvd-coatings...
92. P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and application, Vacuum, 56 (2000) 159-172.
93. S. Schiller, U. Heisig, G. Beister, K. Steinfelder, J. Strumpfel, C. Korndorfer and W. Eieber, Deposition of hard wear-resistant coatings by reactive DC plasmatron sputtering, Thin Solid films 118 (1984) 255-270.
94. I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol. 127 (2000) 203-219.
95. S. M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A 21 (2003) S74-S87.
96. R. B. Van Dover, B. Hessen, D. Werder, C. H. Chen and R. J. Felder, Investigation of ternary transition-metal nitride systems by reactive cosputtering, Chem. Mater. 5 (1993) 32-35.
97. S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider and F. Milde, Pulsed magnetron sputter technology, Surf. Coat. Technol. 61 (1993) 331.
98. W. M. Posadowski, Pulsed magnetron sputtering of reactive compounds, Thin Solid films 343-344 (1999) 85-89.
99. J. Musil, P. Baroch, J. Vlcek, K. H. Namc, J. G. Han, Reactive magnetron sputtering of thin films: present status and trends, Thin Solid Films 475 (2005) 208-218.
100. R. L. Corima et al., US. Patent 4,046,659 (1977).
101. R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 170-176.
102. R. D. Arnell, P. J. Kelly and J. W. Bradley, Recent developments in pulsed magnetron sputtering, Surf. Coat. Technol. 188-189 (2004) 158-163.
103. J. Musil, J. Lestina, J. Vlcek and T. Tolg, Pulsed dc magnetron discharge for high- rate sputtering of thin films, J. Vac. Sci. Technol. A19 (2001) 420-424.
104. Y. Zhou, P. J. Kelly, A. Postill, O. Abu-Zeid, A. A. Alnajjar, The characteristics of aluminium-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets, Thin Solid Films 447-448 (2004) 33-39.
105. P. J. Kelly, C. F. Beevers, P. S. Henderson, R. D. Arnell, J. W. Bradley and H. Backer, A comparison of the properties of titanium-based films produced by pulsed and continuous DC magnetron sputtering, Surf. Coat. Technol. 174-175 (2003) 795-800.
106. M. Benegra, D.G. Lamas, M.E. Ferna´ndez de Rapp, N. Mingolo, A.O. Kunrath and R. M. Souza, Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering, Thin Solid Films 494 (2006) 146-150.
107. U. C. Oh and J. H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys. 74 (1993) 1692-1696.
108. J. S. Chun, I. Petrov and J. E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys. 86 (1999) 3633-3641.
109. E. C. Knox-Davies, S. J. Henley, J. M. Shannon and S. R. P. Silva, Improved optical and electrical properties of low-temperature sputtered GaN by hydrogenation, J. Appl. Phys. 99 (2006) 036108.
110. C. G. Zhang, L. F. Bian, W. D. Chen and C. C. Hsu, Effect of growth conditions on the GaN thin film by sputtering deposition, J. Cryst. Growth 299 (2007) 268- 271.
111. T. Kikuma, K. Tominaga, K. Furutani, K. Kusaka, T. Hanabusa and T. Mukai, GaN films deposited by planar magnetron sputtering, Vacuum 66 (2002) 233-237.
112. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Effects of the narrow band gap on the properties of InN, Phys. Rev. B66 (2002) 201403.
113. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz and R. Jakiela, Effects of electron concentration on the optical absorption edge of InN, Appl. Phys. Lett. 84 (2004) 2805.
114. J. S. Thakur, Y. V. Danylyuk, D. Haddad, V. M. Naik, R. Naik and G. W. Auner, Influence of defects on the absorption edge of InN thin films: The band gap value, Phys. Rev. B 76 (2007) 035309.
115. M. Yoshikawa, M. Kunzer, J. Wagner, H. Obloh, P. Schlotter, R. Schmidt, N. Herres and U. Kaufmann, Band-gap renormalization and band filling in Si-doped GaN films studied by photoluminescence spectroscopy, J. Appl. Phys. 86 (1999) 4400-4402.
116. C. Persson, B. E. Sernelius, A. Ferreira da Silva, C. Moyses Araujo, R. Ahuja and B. Johansson, Optical and reduced band gap in n- and p-type GaN and AlN, J. Appl. Phys. 92 (2002) 3207-3216.
117. K. Wang, R. W. Martin, D. Amabile, P. R. Edwards, S. Hernandez, E. Nogales, K. P. O’Donnell, K. Lorenz, E. Alves, V. Matias, A. Vantomme, D. Wolverson and I. M. Watson, Optical energies of AlInN epilayers, J. Appl. Phys. 103 (2008) 073510.
118. M. van Schilfgaarde, A. Sher, and A.-B. Chen, Theory of AlN, GaN, InN and their alloys, J. Cryst. Growth 178 (1997) 8-31.
119. M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1-xN, InxGa1-xN, and InxAl1-xN, J. Appl. Phys. 88 (2000) 6476-6482
120. L. K. Teles, L. M. R. Scolfaro, J. R. Leite, J. FurthmXller and F. Bechsted, Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN alloys: ab initio calculations, J. Appl. Phys. 92 (2002) 7109-7113.
121. M. Ferhat and F. Bechstedt, First-principles calculations of gap bowing in InxGa1–xN and InxAl1–xN alloys: Relation to structural and thermodynamic properties, Phys. Rev. B 65 (2002) 075213.
122. M. Marques, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, J. Furthmuller, and F. Bechstedt, Lattice parameter and energy band gap of cubic AlxGayIn1–x–yN quaternary alloys, Appl. Phys. Lett. 83 (2003) 890.
123. I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-containing semiconductors, J. Appl. Phys. 94 (2003) 3675-3696.
124. Z. Dridi, B. Bouhafs and P. Ruterana, First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1-xN, InxGa1-xN and InxAl1-xN alloys, Semicond. Sci. Technol. 18 (2003) 850-856.
125. M. Ferhat, Computational optical band gap bowing of III-V semiconductors alloys, Phys. Stat. Sol. (b) 241 (2004) R38-R41.
126. F. Wang, S. S. Li, J. B. Xia, H. X. Jiang, J. Y. Lin, J. B. Li and S. H. Wei, Effects of the wave function localization in AlInGaN quaternary alloys, Appl. Phys. Lett. 91 (2007) 061125.
127. V. Cimalla, J Pezoldt and O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications, J. Phys. D: Appl. Phys. 40 (2007) 6386-6434.
128. J. H. Edgar, C. H. Wei, D. T. Smith, T. J. Kistenmacher and W. A. Brtden, Hardness, elastic modulus and structure of indium nitride thin films on AlN- nucleated/sapphire substrates, J. Mater. Sci. Mater. in Electron. 8 (1997) 307-312.
129. D. Caceres, I. Vergara, R. Gonzalez, E. Monroy, F. Calle, E. Munoz and F. Omnes, Nanoindentation on AlGaN thin films, J. Appl. Phys. 86 (1999) 6773-78.
130. S. R. Jian, T. H. Fang and D-S. Chuu, Analysis of physical properties of III-Nitride thin films by nanoindentation, J. Electron. Mater. 32 (2003) 496-500.
131. F. J. Xu, B. Shen, M. J. Wang, J. Xu, L. Lu, Z. L. Miao, Z. J. Yang, Z. X. Qin, G. Y. Zhang, B. Lin and S. L. Bai, Mechanical properties of AlxGa1-xN films with high Al composition grown on AlN/sapphire templates, Appl. Phys. Lett. 91 (2007) 091905.
132. X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt and W. Gissler, Elastic constants and hardness of ion-beam-sputtered TiNx films measured by Brillouin scattering and depth-sensing indentation, J. Appl. Phys. 69 (1991) 3053-3057.
133. S. Berezina, P. V. Zinin, D. Schneider, D. Fei and D. A. Rebinsky, Combining Brillouin spectroscopy and laser-SAW technique for elastic property characterization of thick DLC films, Ultrasonics 43 (2004) 87-93.
134. www.soest.hawaii.edu/%7Ezinin/Zi-Brillouin.html
135. K. Tsubouchi and N. Mikoshiba, Zero-temperature-coefficient SAW devices on AlN epitaxial films, IEEE Trans. on Sonics and Ultrasonics, su-32 (1985) 634- 644.
136. C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer, Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave Measurements, Appl. Phys. Lett. 72 (1998) 2400.
137. www.emeraldinsight.com/Insight/viewContentIte...
138. D. Schneider and T. Schwarz, A photoacoustic method for characterising thin films, Surf. Coat. Technol. 91 (1997) 136-146.
139. N. M. Jennett, G. A. Smith and A. S. Maxwell, Validated measurement of Young’s modulus, Poisson’s ratio, and thickness for thin coating by combining instrumented nanoindentation and acoustical measurements, J. Mater. Res. 19 (2004) 143-148.
140. T. Chudoba, M. Griepentrog, A. Duck, D. Schneider and F. Richter, Young’s modulus measurements on ultra-thin coatings, J. Mater. Res. 19 (2004) 301-314.
141. G. T. A. Kovacs, Micromachined transducers sourcebook, chap. 3, Mechanical transducers, McGraw-Hill, 2000.
142. Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K.M. Lau and K. J. Chen, Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique, Appl. Phys. Lett. 88 (2006) 041913.
143. www.msm.cam.ac.uk/.../printall.php
144. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992) 1564-83.
145. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20.
146. G. M. Pharr, J. H. Strader and W. C. Oliver, Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement, J. Mater. Res. 24 (2009) 653-666.
147. M. R. VanLandingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol. 108 (2003) 249-265.
148. A. C. Fischer-Cripps, Nanoindentation, 2nd ed., Springer-Verlag, 2004.
149. X. D. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Character. 48 (2002) 11-36.
150. M. F. Doerner and W. D. Nix, A method for interpreting the data from depth- sensing indentation instruments, J. Mater. Res. 1 (1986) 601-609.
151. R. B. King, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23 (1987) 1657-1664.
152. R. Saha and W. D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50 (2002) 23-38.
153. H. Gao, C-H. Chiu, and J. Lee, Elastic contact versus indentation modeling of multi-layered Materials, Int. J. Solids Struct. 29 (1992) 2471-2492.
154. J. Mencik, D. Munz, E. Quandt, E. R. Weppelmann and M. V. Swain, Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res. 12 (1997) 2475-2484.
155. Y. G. Jung, B. R. Lawn, M. Martyniuk, H. Huang and X. Z. Hu, Evaluation of elastic modulus and hardness of thin films by nanoindentation, J. Mater. Res. 19, (2004) 3076-3080.
156. A. M. Korsunsky, M. R. McGurk, S. J. Bull and T. F. Page, On the hardness of coated systems, Surf. Coat. Technol. 99 (1998) 171-183.
157. Z. X. Wei, G.. P. Zhang, H. Chen, J. Luo, R. R. Liu and S. M. Guo, A simple method for evaluating elastic modulus of thin films by nanoindentation, J. Mater. Res. 24 (2009) 801-815.
158. D. Brigg and M. P. Seah, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, 2nd ed., 1990.
159. J. B. Malherbe, Sputtering of compound semiconductor surfaces. II. Compositional changes and radiation-induced topography and damage, Crit. Rev. Solid State Mater. Sci. 19 (1994) 129-195.
160. S. Krischok, V. Yanev, O. Balykov, M. Himmerlich, J. A. Schaefer, R. Kosiba, G. Ecke, I. Cimalla, V. Cimalla, O. Ambacher, H. Lu, W. J. Schaff and L. F. Eastman, Investigations of MBE grown InN and the influence of sputtering on the surface composition, Surf. Sci. 566-568 (2004) 849-855.
161. J. Kovac and A. Zalar, Surface composition changes in GaN induced by argon ion bombardment, Surf. Interface Anal. 34 (2002) 253-256.
162. F. Gao, S. J. Lee, J. S. Pan, L. J. Tang and D.L. Kwong, Surface passivation using ultrathin AlNx film for Ge-metal-oxide-semiconductor devices with hafnium oxide gate dielectric, Appl. Phys. Lett. 86 (2005) 113501.
163. D. Ruffieux. M. A. Dubois and N. F. de Rooij, An AlN piezoelectric microactuator array, 2000 MEMS, 662-667.
164. S. Rey-Mermet, R. Lanz and P. Muralt, AlN thin film resonators operating at 8 GHz used as sensors for organic films, 2005 IEEE Ultrason. Symp. 1253-1257.
165. R. S. Naik, R. Reif, J. J. Lutsky and C. G. Sodini, Low-temperature depositon of highly textured aluminum nitride by direct current magnetron sputtering for applications in thin-film resonators, J. Electrochem. Soc. 146 (1999) 691-696.
166. C. R. Aita and C. J. Gawlak, The dependance of aluminum nitride film crystallography on sputtering plasma composition, J. Vac. Sci. Technol. A1 (1983) 403-406.
167. F. S. Ohuchi and P. E. Russel, AlN thin films with controlled crystallographic orientations and their microstructure, J. Vac. Sci. Technol. A5 (1987) 1630-1634.
168. T. Takahashi, F. Takeda, and M. Naoe, 1990 Mater. Res. Soc. Symp. Proc. 277.
169. H. Okano, Y. Takahashi, T. Tanaka, K. Shibata and S.Nakano, Preparation of c-axis oriented AlN thin films by low-temperature reactive sputtering, Jpn. J. Appl. Phys. 31 (1992) 3446-3451.
170. R. Ruby and P. Merchant, Micromachined thin film bulk acoustic resonators, 1994 IEEE Inter. Freq. Control Symp. 135-138.
171. H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata and S. Nakano, Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices, Appl. Phys. Lett. 64 (1995) 166.
172. M. Akiyama, C. N. Xu, K. Nonaka, K. Shobu and T. Watanabe, Statistical approach for optimization sputtering conditions of highly oriented aluminum nitride thin films, Thin Solid Films 315 (1998) 62-65.
173. H. P. Lobl, M. Klee, O. Wunnicke, R. Kiewitt, R. Dekker and E. Pelt, Piezoelectric AlN and PZT films for micro-electronic applications, 1999 IEEE Ultrason. Symp. 1031-1036.
174. M. A. Dubois and P. Muralt, Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering, J. Appl. Phys. 89 (2001) 6389-6395.
175. G. F. Iriarte, F. Engelmark, and I. V. Katardjiev, Reactive sputter deposition of highly oriented AlN films at room temperature, J. Mater. Res. 17 (2002) 1469- 1475.
176. M. Ishihara, T. Nakamura, F. Kokai and Y. Koga, Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method, Diamond Related Mater. 11 (2002) 408-412
177. C. Caliendo, Gigahertz-band electroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature, Appl. Phys. Lett. 83 (2003) 4581.
178. M. Benetti, D. Cannat□, F. Di Pietrantonio, V. I. Fedosov and E. Verona, Gigahertz-range electro-acoustic devices based on pseudo-surface-acoustic waves in AlN/diamond/Si structures, Appl. Phys. Lett. 87 (2005) 033504.
179. W. D. Sproul, J. E. Greene and J. A. Thornton eds., Physics and chemistry of protective coatings, 1986.
180. J. E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44.
181. J. E. Sundgren and H. T. G. Hentzell, A review of the present state of art in hard coatings grown from the vapor phase, J. Vac. Sci. Technol. A4 (1986) 2259-2279.
182. M. Wittmer, Barrier layers: Principles and applications in microelectronics, J. Vac. Sci. Technol. A2 (1984) 273-280.
183. M. Wittmer, Properties and microelectronic application of thin films of refactory metal nitrides, J. Vac. Sci. Technol. A3 (1985) 1797-1803.
184. S. K. Rha, W. J. Lee, S. Y. Lee, Y. S. Hwang, Y. J. Lee, D. I. Kim, D. W. Kim, S. S. Chun and C. O. Park, Improved TiN film as a diffusion barrier between copper and silicon, Thin Solid Films 320 (1998) 134-140.
185. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo and M. C. Park, TiN layer as an antireflection and antistatic coating for display, Surf. Coat. Technol. 128-129 (2000) 156-160.
186. G. F. Iriarte, J. Bjurstrom, J. Westlinder, F. Engelmark and I. V. Katardjiev, Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN and Ni, IEEE Trans. Ultrasonic. Ferroelect. Freq. Control, 52 (2005) 1170- 1174.
187. G. M. Matenoglou, S. Logothetidis and S. Kassavetis, Durable TiN/TiNx metallic contacts for solar cells, Thin Solid Films 511-512 (2006) 453-56.
188. S. Y. Guo, W. N. Shafaman and A. E. Delahoy, TiN and TiO2: Nb thin film preparation using hollow cathode sputtering with application to solar cells, J. Vac. Sci. Technol. A 24 (2006) 1524.
189. J. F. Creemer, W. van der Vlist, C. R. de Boer, H. W. Zandbergen, P. M. Sarro, D. Briand and N. F. de Rooij, MEMS hotplates with TiN as a heater material, 2005 IEEE Sensors, 330-333.
190. Ph. Robert, D. Saias, C. Billardl, S. Boret, N. Sillon, C. Maeder-Pachurkal, P. L. Charvet, G. Bouche, P. Ancey and P. Bermyer, Integrated RF-MEMS switch based on a combination of thermal and electrostatic actuation, Transducers '03, 1714-1717.
191. S. Takahashi, G. N. Nielson, D. Seneviratne, G. Barbastathis and H. L. Taller, Titanium nitride micro-electromechanical bridge for wavelength selective switching, 2005 IEEE/LEOS Inter. Conf. Optical MEMS and Appl. Conf. 41-42.
192. M. Benegra, D. G. Lamas, M. E. Fernandez de Rapp, N. Mingolo, A.O. Kunrath and R. M. Souza, Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering, Thin Solid Films 494 (2006) 146-150.
193. Y. Ando, I. Sakamoto, I. Suzuki and S. Maruno, Resistivity and structural defects on reactively sputtered TiN and HfN films, Thin Solid Films 343-344 (1999) 246-249.
194. J. E. Sundgren, B. O. Johansson, A. Rockett, S. A. Barnett and J. E. Greene, in Physics and Chemistry of Protective Coatings, p.95-115, eds by W. D. Sproul, J. E. Greene and J. A. Thornton, 1986.
195. H. Holleck, Materials selection for hard coatings, J. Vac. Sci. Technol. A4 (1986) 2661-2669.
196. J. A. Thornton, The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. A4 (1986) 3059-3065.
197. M. M. Hawkeye and M. J. Brett, Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films, J. Vac. Sci. Technol. A 25 (2007) 1317-1335.
198. L. Hsu, R. E. Jones, S. X. Li, K. M. Yu and W. Walukiewicz, Electron mobility in InN and III-N alloys, J. Appl. Phys. 102 (2007) 073705.
199. S. Chichibu, T. Mizutani, T. Shioda, H. Nakanishi, T. Deguchi, T. Azuhata, T. Sota and S. Nakamura, Urbach-Martienssen tails in a wurtzite GaN epilayer, Appl. Phys. Lett. 70 (1997) 3440.
200. Q. X. Guo, T. Tanaka, M. Nishio, H. Ogawa, X. D. Pu and W. Z. Shen, Observation of visible luminescence from indium nitride at room temperature, Appl. Phys. Lett. 86 (2005) 231913.
201. H. Y. Joo, H. J. Kim, S. J. Kim and S. Y. Kim, Spectrophotometric analysis of aluminum nitride thin films, J. Vac. Sci. Technol. A17 (1999) 862-870.
202. I. Yonenaga, T. Shima and M. H. F. Sluiter, Nanoindentation hardness and elastic moduli of bulk single-crystal AlN, Jpn. J. Appl. Phys. 41 (2002) 4620-4621.
203. I. C. Oliveira, K. G. Grigorov, H. S. Maciel, M. Massi and C. Otani, High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness, Vacuum 75 (2004) 331-338.
204. K. Kim, W. R. L. Lambrecht, and B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Phys. Rev. B 53 (1996) 16310-16326.
205. F. Wright, Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN, J. Appl. Phys. 82 (1997) 2833-2839.
206. S. Yu. Davydov, Evaluation of physical parameters for the group III nitrates: BN, AlN, GaN, and InN, Semiconductors 36 (2002) 41-44.
207. S. P. Lepkowski, J. A. Majewski and G. Jurczak, Nonlinear elasticity in III-N compounds: Ab initio calculations, Phys. Rev. B 72 (2005) 245201.
208. J. Kim, K. Paik and S. Oh, The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate, J. Appl. Phys. 86 (1999) 5474-5479.
209. H. Ehrenreich and J. P. Hirth, Mechanism for dislocation density reduction in GaAs crystals by indium addition, Appl. Phys. Lett. 44 (1985) 668.
210. S. N. Skpenuma and C. W. Myles, Structural stability of Zn-containing II–VI semiconductor alloys: microhardness calculations, J. Vac. Sci. Technol. A10 (1992) 208-216.